> SPSS 15.0
Command Syntax Reference

For more information about SPSS® software products, please visit our Web site at http://www.spss.com or contact

SPSS Inc.

233 South Wacker Drive, 11th Floor
Chicago, IL 60606-6412

Tel: (312) 651-3000

Fax: (312) 651-3668

SPSS is a registered trademark and the other product names are the trademarks of SPSS Inc. for its proprietary computer
software. No material describing such software may be produced or distributed without the written permission of the owners of
the trademark and license rights in the software and the copyrights in the published materials.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of The Rights in Technical Data and Computer
Software clause at 52.227-7013. Contractor/manufacturer is SPSS Inc., 233 South Wacker Drive, 11th Floor, Chicago, IL
60606-6412.

Patent No. 7,023,453

General notice: Other product names mentioned herein are used for identification purposes only and may be trademarks of
their respective companies.

TableLook is a trademark of SPSS Inc.

Windows is a registered trademark of Microsoft Corporation.

DataDirect, DataDirect Connect, INTERSOLYV, and SequeLink are registered trademarks of DataDirect Technologies.
Portions of this product were created using LEADTOOLS © 1991-2000, LEAD Technologies, Inc. ALL RIGHTS RESERVED.
LEAD, LEADTOOLS, and LEADVIEW are registered trademarks of LEAD Technologies, Inc.

Sax Basic is a trademark of Sax Software Corporation. Copyright © 1993-2004 by Polar Engineering and Consulting. All
rights reserved.

A portion of the SPSS software contains zlib technology. Copyright © 1995-2002 by Jean-loup Gailly and Mark Adler. The
zlib software is provided “as is,” without express or implied warranty.

A portion of the SPSS software contains Sun Java Runtime libraries. Copyright © 2003 by Sun Microsystems, Inc. All rights
reserved. The Sun Java Runtime libraries include code licensed from RSA Security, Inc. Some portions of the libraries are
licensed from IBM and are available at http://www-128.ibm.com/developerworks/opensource/.

SPSS 15.0 Command Syntax Reference
Copyright © 2006 by SPSS Inc.

All rights reserved.

Printed in the United States of America.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Contents

Introduction: A Guide to SPSS Command Syntax 1
Add-On Modules e 12
Universals 16
COMMaANAS . . e e 16
Running Commands. e 18
Subcommands. 19
KEYWOIS . . e e 19
Values in Command Specifications i 19
String Values in Command Specifications 20
Delimiters . .. 20
Command Order. 21
FIlES . e 25
Command File 25
dournal Fileo 25
Data Files 26
Variables 28
Variable Names. oo 28
Keyword TO.o e 30
Keyword ALLo 31
Scratch Variables 31
System Variables. 31
Variable Types and Formats e 32
Input and Output Formats. i 32
String Variable Formats 33
Numeric Variable Formats 35
Dateand Time Formats i 41
FORTRAN-like Input Format Specifications 47
Transformation EXpressions i 47
NUumeric EXpressions. e 47
Numeric FUNCLIONSo 51
Arithmetic FUNCHiONS 51
Statistical FUNCHONS e 52
Random Variable and Distribution Functions 53
Date and Time Functions i 64

String EXpressions.o 72

String FUNCHiONS. o 73
String/Numeric Conversion FUNCLIONS i i e 76
LAG FUNCHiON. . .t 77
VALUELABEL FUNCHION. . ..o e e e e et e 77
Logical EXpressions. i e 78
Logical Functions i e 81
Scoring Expressions (SPSS Server) 82
Missing Values o 84
Treatment of Missing Values in Arguments it iiannn.. 85
Missing Values in Numeric EXpressions. 86
Missing Values in String EXpressions.t e 86
Missing Values in Logical Expressions. i 87
Missing Value Functions i e 87

2SLS 88

OV BIVIBW . .ot 88
EQUATION Subcommand e e e e 89
INSTRUMENTS Subcommand e 90
ENDOGENQUS Subcommando e e e 90
CONSTANT and NOCONSTANT Subcommands. i, 91
SAVE Subcommand 91
PRINT Subcommand. e e e 91
APPLY Subcommand e 91

ACF 93

OV BIVIBW . . o 93
EXAMPIE . . e 94
VARIABLES Subcommand e 95
DIFF Subcommand 95
SDIFF Subcommand e 95
PERIOD Subcommand i 96
LN and NOLOG Subcommands i e 96
SEASONAL Subcommand. i 97
MXAUTO Subcommand 97
SERROR Subcommand 97

PACF Subcommand
APPLY Subcommand e
ReferenCes. . ..o

ADD DOCUMENT

017 =1

ADD FILES

VIV B .« .ottt
EXAMIPIES . . oo
FILE Subcommand
RENAME Subcommand e
BY Subcommand
DROP and KEEP Subcommands
IN Subcommand.
FIRST and LAST Subcommands e e
MAP Subcommand.
Adding Cases from Different Data Sources. i

ADD VALUE LABELS

0T YT P
EXamples . .o
Value Labels for String Variables

AGGREGATE

OV BIVI B . .ot
EXamMpIE . . e
OUTFILE Subcommand i e e e

Creating a New Aggregated Data File versus Appending Aggregated Variables.........
BREAK Subcommand e
DOCUMENT Subcommand e e

100

100

102

102
104
104
105
105
106
106
107
108
108

109

109
110
110

112

PRESORTED Subcommand e e e s 17

Aggregate FUNCLIONS e 117
MISSING Subcommand 120
Including Missing Values. i e e e 120
Comparing Missing-Value Treatments i, 121
AIM 123
OV BIVI B . .ot 123
Grouping Variable 124
CATEGORICAL Subcommand e e e 124
CONTINUQUS Subcommand e e 124
CRITERIA Subcommand e e e 124
MISSING Subcommand 125
PLOT Subcommand e 125
ALSCAL 127
0T YT P 128
EXample . .o 129
VARIABLES Subcommand i 130
INPUT Subcommand 130
SHAPE Subcommand e 130
LEVEL Subcommand. 131
CONDITION Subcommand o e e e e e 132
FILE Subcommand e 132
MODEL Subcommand. 134
CRITERIA Subcommand e e e 135
PRINT Subcommand. e e e e 136
PLOT Subcommand 136
OUTFILE Subcommand o e e e e 137
MATRIX Subcommand 138
Specification of ANalySes i e 140
REfEIENCES. . o 141

vi

ANACOR 143

OV BIVI B .« .ot e 143
EXample . . 144
TABLE Subcommand 144
Casewise Datat 144
Table Data. 145
DIMENSION Subcommand. e e 146
NORMALIZATION Subcommand. e e e e 146
VARIANCES Subcommand e 147
PRINT Subcommand. e e e 147
PLOT Subcommand e 147
MATRIX Subcommand 149
Analyzing Aggregated Data 150
ANOVA 151
OV BIVI B .ot 151
EXamples . .. e 153
VARIABLES Subcommand e e 153
COVARIATES Subcommand e e e 154
MAXORDERS Subcommand 154
METHOD Subcommand e e 154
Regression Approach i e 154
Classic Experimental Approach i e 155
Hierarchical Approach e e e 155
EXample. . ..o e 156
Summary of Analysis Methods 156
STATISTICS Subcommand e e e 158
Cell Means ... e e 158
Regression Coefficients for the Covariates. 158
Multiple Classification Analysis e 158
MISSING Subcommand 159
RefErENCES. . o 159

vii

APPLY DICTIONARY

Overview

FROM Subcommand. e
NEWVARS Subcommand e
SOURCE and TARGET Subcommandst
FILEINFO Subcommand e e e e
VARINFO Subcommand e e

AUTORECODE

Overview

Example .

VARIABLES Subcommand
INTO Subcommand.
BLANK Subcommand
GROUP Subcommand. e
SAVE TEMPLATE Subcommand e

Template File Format
APPLY TEMPLATE Subcommand.ttt
Interaction between APPLY TEMPLATE and SAVETEMPLATE.
PRINT Subcommand. o e e e
DESCENDING Subcommand. e e e

BEGIN DATA-END DATA

Overview
Examples

BEGIN GPL-END GPL

Overview

viii

160

161
162
162
163
164
165

167

167
168
169
169
169
170
m
172
172
173
173
174

175

175
176

177

BEGIN PROGRAM-END PROGRAM

OVBIVIBW .« . e ettt et e e e e e

BREAK

OVBIVIBW & . ettt e e e e e e e e
EXamples . .. e

CACHE

CASEPLOT

0T YT P
EXamples . .o
VARIABLES Subcommand i
DIFF Subcommand e
SDIFF Subcommand
PERIOD Subcommand
LN and NOLOG Subcommandsttt
ID Subcommand. e
FORMAT Subcommand. e e e
MARK Subcommand. e
SPLIT Subcommand i e
APPLY Subcommand

CASESTOVARS

OV IV B .ot
EXamples . ..o
ID Subcommand.
INDEX Subcommand e
VIND Subcommand e
COUNT Subcommand. e e e
FIXED Subcommand e

179

179

182

182
182

183

184

184
186
186
187
187
187
188
188
188
190
191
192

193

AUTOFIX Subcommand.o e e 198

RENAME Subcommand e 199
SEPARATOR Subcommand e 199
GROUPBY Subcommand. e 200
DROP Subcommand 200
CATPCA 201
VIV B . ottt et e e 202
EXample . . 203
VARIABLES Subcommand i 205
ANALYSIS Subcommand 205
Level Keyword. e 206
SPORD and SPNOM Keywordsoit it ettt e 206
DISCRETIZATION Subcommand e e 206
GROUPING Keywordot e e e e e e e e e 207
NCAT KeywWordo e e e e 207
MISSING Subcommand 208
PASSIVE Keyword 208
ACTIVE Keywordo e e e 208
SUPPLEMENTARY Subcommand i e 209
CONFIGURATION Subcommand e e e 209
DIMENSION Subcommand. e 209
NORMALIZATION Subcommand. e e 210
MAXITER Subcommand 210
CRITITER Subcommand e e e s 211
PRINT Subcommand. e e e 21
PLOT Subcommandot e e 212
BIPLOT Keywordo 215
SAVE Subcommand e 215
OUTFILE Subcommand e e e e e 217
CATREG 218
OV BIVI B . .ot e 219
EXAMpIE . . e 220
VARIABLES Subcommand e 221

ANALYSIS Subcommand e 222

LEVEL Keyword oo e e 222
SPORD and SPNOM Keywordsttt et et e 223
DISCRETIZATION Subcommand e e 223
GROUPING Keywordot e e e e e e e e 223
DISTR KEeYWOrdot 224
MISSING Subcommand 224
SUPPLEMENTARY Subcommand e 224
INITIAL Subcommand. e e e 225
MAXITER Subcommand 225
CRITITER Subcommand e e e 225
PRINT Subcommand. o e e e e 225
PLOT Subcommand i 227
SAVE Subcommand 221
OUTFILE Subcommand e e e 228
CCF 229
0T YT P 229
EXample . .o 230
VARIABLES Subcommand i 231
DIFF Subcommand e 231
SDIFF Subcommand 231
PERIOD Subcommand 232
LN and NOLOG Subcommandst e e 232
SEASONAL Subcommand. e 233
MXCROSS Subcommand 233
APPLY Subcommand 233
REfErENCES. . o 234
cD 235
VIV B .« .ottt e 235
EXaMPIES . . oo 236
Preserving and Restoring the Working Directory Setting. 236

Xi

CLEAR TRANSFORMATIONS 238

OV BIVI B .« .ot e 238
EXAMDIES . ..o 238
CLUSTER 239
VIV B .« .ottt 240
EXaMPIE . .o 241
Variable List e 241
MEASURE Subcommand 242
Measuresforinterval Data 242
Measures for Frequency CountData 243
MeasuresforBinaryData e 243
METHOD Subcommand e e 248
SAVE Subcommand e 249
ID SubcommMaNd. o 250
PRINT Subcommand. e e e e 250
PLOT Subcommandot e 251
MISSING Subcommand 252
MATRIX Subcommand 252
Matrix QUIPULo 252
MatrixX INpUL. . .. e 253
Formatofthe Matrix Data File i 253
SPIt RIS, .o 254
Missing Values o e 254
Example: Qutputto External File. 254
Example: Output Replacing Active Dataset i, 254
Example: Input from Active Dataset. 255
Example: Inputfrom External File. 255
Example: Input from Active Dataset. i 255
COMMENT 257
VIV B .« .ottt e 257
EXaMPIES . . oo 257

Xii

COMPUTE 258

OV BIVI B .« .ot e 258
SYNtaX RUIBS. . .o o e e 259
Numeric Variables. e 259
String Variables. 259
OPEIAtIONS .« ottt e 259
Numeric Variables. 259
String Variables. 260
EXAMPIES . ..o e 260
Arithmetic Operations 260
Arithmetic FUNCLiONS e 261
Statistical Functions e 261
Missing-Value Functions 261
String FUNCHIONS. o e 262
Scoring Functions (SPSS Server Only) 263
CONJOINT 264
OV BIVI B .ot 264
EXAMDIES . .o e 266
PLAN Subcommand 266
DATA Subcommand 267
SEQUENCE, RANK, or SCORE Subcommand 269
SUBJECT Subcommand i e e e e e 269
FACTORS Subcommand e e e 270
PRINT Subcommand. o e e e 271
UTILITY Subcommand e e e 272
PLOT Subcommandt e e e 273
CORRELATIONS 274
OV BIVI B . .ot 274
EXAMDIES . ..o e 275
VARIABLES Subcommand i e e 275
PRINT Subcommand. e e e 276
STATISTICS Subcommand e e e 276

xiii

MISSING Subcommand e
MATRIX Subcommand
Format of the Matrix DataFile i
Sl RIS, . o
Missing Values e e
EXample. . . e
EXample. . ..o
EXample. . .

CORRESPONDENCE 279

OVBIVIBW & . ettt e e e e e e e e
EXample . .o
TABLE Subcommand

Casewise Data
Aggregated Data.
Table Data.

DIMENSION Subcommand. e e e
SUPPLEMENTARY Subcommand i e
EQUAL Subcommand
MEASURE Subcommand e
STANDARDIZE Subcommand
NORMALIZATION Subcommand. e
PRINT Subcommand. e e e e
PLOT Subcommand
OUTFILE Subcommand o e e e

COUNT 290

O BV W o ettt
EXaMPIES . . oo

COXREG 292

017 =1
EXample . .o
TIME PROGRAM Command.t ot ettt e e e e e e

Xiv

CLEAR TIME PROGRAM Command e 295

VARIABLES Subcommand i 295
STATUS Subcommand 296
STRATA Subcommand o e e e 296
CATEGORICAL Subcommand i e e e 297
CONTRAST Subcommand. e e e 297
METHOD Subcommand e e 299
MISSING Subcommand 300
PRINT Subcommand. e e 301
CRITERIA Subcommando e e e e 301
PLOT Subcommand 302
PATTERN Subcommand e e e e 303
OUTFILE Subcommand e e e e 303
SAVE Subcommand 303
EXTERNAL Subcommand e e 304
CREATE 305
0T YT P 305
EXamples . .o 307
CSUM FUNCHION. . ..ot e e e e e e e 307
DIFF FUNCHION . . . 307
FET FUNCHiON. . .o 308
IFFT FUNCHiON .. 308
LAG FUNCHiON .« .o 309
LEAD Function o 309
M A FUNCHION. . . 310
PM A FUNCHION. . ..o 31
RMED FUNCHiON. . ..o e e e 3N
SDIFF FUNCHiON . . . e 312
T4253H FUNCHIONo 313
REfEIENCES. . . o e 313
CROSSTABS 314
OV BIVI B .ot 315
EXamples . .. 316

XV

VARIABLES Subcommand e 317

TABLES Subcommand 317
General Mode o e 318
Integer Mode. e 318

CELLS Subcommand. 319

STATISTICS Subcommand e e e 320

METHOD Subcommand e e 321

MISSING Subcommand 322

FORMAT Subcommand. e e e 322

COUNT Subcommand. e e e e 323

BARCHART Subcommand. e e e 323

WRITE Subcommand e 323
Reading a CROSSTABS Procedure QutputFile 325

REfEIENCES. . . .o e 325

CSDESCRIPTIVES 326

OV BIVI B .ot 326

EXamples . .. e 327

PLAN Subcommand 328

JOINTPROB Subcommand e e 328

SUMMARY Subcommand. 329

MEAN Subcommand e 329

SUM Subcommand. e 329

RATIO Subcommand. 330

STATISTICS Subcommand e e e e 330

SUBPOP Subcommand. 331

MISSING Subcommand 331

CSGLM 332

0T YT P 333

EXamples . .. e 334

CSGLM Variable List.o e e e e 335

PLAN Subcommand 335

JOINTPROB Subcommand e e 335

MODEL Subcommand. 336

XVi

INTERCEPT Subcommand. ot e e e s 336

INCLUDE Keyword.ot e e e e e e e e 337
SHOW Keyword. e 337
EXample. .. 337
CUSTOM Subcommand e e e e 337
EMMEANS Subcommand. e 339
CONTRAST Keyword oot e e e e e e 340
CRITERIA Subcommand e e e e e 3
STATISTICS Subcommand e e 342
TEST Subcommand. 342
TYPE Keyword. o 342
PADJUST Keyword o e e 342
DOMAIN Subcommand. 343
MISSING Subcommand 343
PRINT Subcommand. e e e 343
SAVE Subcommand e 344
OUTFILE Subcommand o e e e e e 344
CSLOGISTIC 346
OV BIVI B .ot 347
EXAMDIES . ..o e 348
CSLOGISTIC Variable List e 349
PLAN Subcommand o e 350
JOINTPROB Subcommand e e e e 350
MODEL Subcommand. 350
INTERCEPT Subcommand. e e e e 351
INCLUDE Keyword.ot e e e e e e e e e e e 351
SHOW Keyword. e e e e 351
EXample. . .o e 351
CUSTOM Subcommand e e e 351
EXample. . . e 353
EXample. . ..o 353
EXample. .. 354
ODDSRATIOS Subcommand 354
EXample. . .o e 356
EXample. .. 356
CRITERIA Subcommand e e e 357
STATISTICS Subcommand e 357

Xvii

TEST Subcommand. e 358

TYPE Keywordo e 358
PADJUST Keyword e e e 358
DOMAIN Subcommand. 358
MISSING Subcommand 359
PRINT Subcommand. e e 359
SAVE Subcommand 360
OUTFILE Subcommando e e e 360
CSORDINAL 361
0T YT P 362
EXamples . ..o 363
Variable Listo e 364
PLAN Subcommand 365
JOINTPROB Subcommand e e 365
MODEL Subcommand. 365
LINK Subcommand. 366
CUSTOM Subcommand e e e e e 366
ODDSRATIOS Subcommando 369
CRITERIA Subcommand e e e 3N
STATISTICS Subcommand e 372
NONPARALLEL Subcommand. e e e 372
TEST Subcommand.o 373
DOMAIN Subcommand. e 373
MISSING Subcommand 374
PRINT Subcommand. e 374
SAVE Subcommand 375
OUTFILE Subcommando e e e 376
CSPLAN 378
OV IV B .ot 380
Basic Specification 381
Syntax RUIBSo 382
EXaMPIES . . oo 383
CSPLAN Command. e e et e e 386

xviii

PLAN Subcommand 386

PLANVARS Subcommand. 386
SRSESTIMATOR Subcommand e 387
PRINT Subcommand.t e e e 387
DESIGN Subcommand e 388
STAGELABEL Keyword. e e e e e 388
STRATA KeyWOrd.o e e e e 388
CLUSTER Keyword.o e e e e 388
METHOD Subcommand 389
ESTIMATION Keyword.t e e e e et 390
SIZE Subcommand e 390
RATE Subcommand o 391
MINSIZE Keywordo 391
MAXSIZE Keywordo e 392
MOS Subcommand. 392
MIN Keyword e 392
MAX KeyWord . . .o e 392
STAGEVARS Subcommand e 392
STAGEVARS Variables. e 393
ESTIMATOR Subcommand e e e 394
POPSIZE Subcommand. 394
INCLPROB Subcommand e e e 395
CSSELECT 397
OV VI B .« .ottt 397
EXamMPle . . 399
PLAN Subcommand 399
CRITERIA Subcommand e e 400
STAGES Keywordo e e e 400
SEED Keyword.o 400
CLASSMISSING Subcommand e e 400
DATA Subcommand 401
RENAMEVARS Keywordo e e e e e e 401
PRESORTED Keywordot e e e e e 401
SAMPLEFILE Subcommand. 401
OUTFILE Keywordo e e e e e et e e 402
KEEP Keyword.o e 402
DROP Keywordo e 402

XiX

JOINTPROB Subcommand e 402

Structure of the Joint ProbabilitiesFile i ... 403
SELECTRULE Subcommand. e e e 405
PRINT Subcommand. o e e e 405

CSTABULATE 406
VIV B .« .ottt 406
EXAMIPIES . .o 407
PLAN Subcommand e 408
JOINTPROB Subcommand e e e e e 408
TABLES Subcommand 409
CELLS Subcommand. e 409
STATISTICS Subcommand e 409
TEST Subcommand. e 410
SUBPOP Subcommand. 410
MISSING Subcommand 411

CTABLES 412
0T YT P 14
Syntax ConVeNtioNS 415
EXamples . .o 415
TABLE Subcommand e 416

Variable TYpeS. . .. oo 417

Category Variables and Multiple Response Sets 417

Stacking and Nesting. 418

ScaleVariables e 419

Specifying SUMMaAries. e 419

Formats for Summaries 425

Missing Values in SUmMmaries i e 426
SLABELS Subcommand 426
CLABELS Subcommand e 427
CATEGORIES Subcommand e e e e 428

Explicit Category Specification e 429

Implicit Category Specification i e 430

Totals. ..o 432

Empty Categories. oo e 433

XX

TITLES Subcommand: Titles, Captions, and CornerText 433

Significance Testing oot 434
Chi-Square Tests: SIGTEST Subcommand 434
Pairwise Comparisons of Proportions and Means: COMPARETEST Subcommand 435

FORMAT Subcommand. e e e 437

VLABELS Subcommand 438

SMISSING Subcommand 438

MRSETS Subcommand. 439

CURVEFIT 440

0T YT P 440

EXample . . 442

VARIABLES Subcommand i 443

MODEL Subcommand. 443

UPPERBOUND Subcommand e e 444

CONSTANT and NOCONSTANT Subcommands.o i, 444

CIN Subcommand. 445

PLOT Subcommand e 445

ID SubcommMaNnd. o 445

SAVE Subcommand e 445

PRINT Subcommand. e e e 445

APPLY Subcommand 446

REfErENCES. . . .o 446

DATA LIST 448

OV VI B .« .ottt 449

EXaMPIES . . oo 450

OPBratiONS .« . .ottt 451
Fixed-Format Data. i e 451
Freefield Datao i 452

FILE Subcommand 452

FIXED, FREE, and LIST Keywords i e 453

TABLE and NOTABLE Subcommands 454

RECORDS Subcommand e e e 455

SKIP Subcommand. 456

XXi

END Subcommand e
Variable Definition e
Variable Names e e
Variable Location o

Fixed-Format Data. i

Freefield Data e
Variable Formats.

Column-Style Format Specifications.
FORTRAN-like Format Specifications. e
Numeric Formats.
Implied Decimal Positions
String Formats. e

DATAFILE ATTRIBUTE

OVBIVIBW .« ettt et e e e e e e

DATASET ACTIVATE

017 =1

DATASET CLOSE

OVBIVIBW .« . ottt e et e e e e e e e

DATASET COPY

OVBIVIBW .« . ettt et e e e e e e

DATASET DECLARE

017 =1

xxii

466

469

469

471

an

472

472

475

DATASET DISPLAY 477

OVBIVIBW .« . e ettt et e e e e e 477

DATASET NAME 478

OVBIVIBW & . ettt e e e e e e e e 478

DATE 481

VIV B o ettt 481
Syntax RUlES.o 483

Starting Value and Periodicity 483

BY Keyword. 484
EXample 1. .o e 484
EXamMpIE 2. . . o e 484
Example 3. . .o 485
EXample . . . e 486
Example B. . ..o 487
EXampIE B. . ..o e 487
EXample 7. .. 488

DEFINE-'ENDDEFINE 490

0T YT P 491
EXamples . .o 493
Macro ArgUMENES. . . .t e 495
Keyword Arguments i 496
Positional Arguments. e 497
Assigning Tokens 1o Arguments.ttt e 498
Defining Defaults. e 501
Controlling EXpansiont 501
Macro DireCtiVES . . o oo e 502
Macro Expansion in Commentsttt 502
String Manipulation Functions i 502
SET Subcommands for UsewithMacro i 504

xxiii

Restoring SET Specifications
Conditional ProCesSing. . . .o vttt e e

Unquoted String Constants in Conditional !IF Statements.
Looping CoNStrUCES. . . .ottt

INdeX LOOP. . ..o e
List-Processing Loop.o e
Direct Assignment of Macro Variables

DELETE VARIABLES

OVBIVIBW .« . ottt e et e e e e e e e

DESCRIPTIVES

OV BIVI B .ot
EXAMDIES . .o e
VARIABLES Subcommand e e

Z S OIS v it ittt e
SAVE Subcommand e
STATISTICS Subcommand e e e
SORT Subcommand e
MISSING Subcommand

DETECTANOMALY

OV VI B .« .ottt
EXaMPIES . . oo
VARIABLES Subcommand
HANDLEMISSING Subcommand. e
CRITERIA Subcommand e e e e
SAVE Subcommand
OUTFILE Subcommand e e e e e
PRINT Subcommand. e

XXiv

509

510

510
511
511
512
512
513
514
514

516

DISCRIMINANT 525

OV BIVI B .« .ot e 526
EXamMpIE . . e 527
GROUPS Subcommand. 528
VARIABLES Subcommand i 528
SELECT Subcommand. e 528
ANALYSIS Subcommand 529
Inclusion Levels. 530
METHOD Subcommand 531
OUTFILE Subcommand e e e e e 531
TOLERANCE Subcommand i e e e e e 532
PIN and POUT Subcommands. i e e e e 532
FIN and FOUT Subcommands i e e e 532
VIN Subcommand. 533
MAXSTEPS Subcommand 533
FUNCTIONS Subcommand e e e 533
PRIORS Subcommand 534
SAVE Subcommand 534
STATISTICS Subcommand e e 536
ROTATE Subcommand i e e e e 538
HISTORY Subcommand. e e 538
CLASSIFY Subcommando 538
PLOT Subcommand 539
MISSING Subcommand 539
MATRIX Subcommand 539
Matrix QULPUL . .. o 540
MatrixX INpUL. . . e 540
Format ofthe Matrix DataFile i 541
SpPlitFiles. .o e 541
STDDEV and CORR Records.ot e et 541
Missing Valueso e 542
EXamples. . ..o 542
DISPLAY 544
OV BIVI B . .ot e 544
EXamples . .o 545

XXV

SORTED Keywordo 545

VARIABLES Subcommand i 545
DO IF 547
OV BIVIBW .« . ottt e e 548
EXAMDIES . ..o 548
Syntax RUlES.o 549
Logical EXpressions.ot e 550
OPBratiONS .« . .ottt e 550
Flow of Control oo e 551
Missing Values and Logical Operators.ttt 551

ELSE Command. i 552
ELSE IF Command.o 553
Nested DO IF StruCtUres.ot e e e 554
Complex File Structuresot 555
DO REPEAT-END REPEAT 557
0T YT P 557
EXamples . .o 559
PRINT Subcommand. o e e e e 560
DOCUMENT 563
OV BIVIBW .« . ettt e 563
EXAMDIES . .o e h64
DROP DOCUMENTS 565
VIV B .« .ottt e 565
EXaMPIES . . oo 565

XXVi

ECHO

OVBIVIBW .« . e ettt et e e e e e

END CASE

OVBIVIBW & . ettt e e e e e e e e
EXamples . .. e

END FILE

OVBIVIBW .« ettt et e e e e e e
EXAMDIES . .o e

ERASE

OVBIVIBW .« ettt et e e e e e e
EXAMDIES . ..o e

EXAMINE

OV VI B .« .ottt
EXAMPIES . .o
VARIABLES Subcommand
COMPARE Subcommand
TOTAL and NOTOTAL Subcommandsttt e
ID Subcommand.
PERCENTILES Subcommand. et e
PLOT Subcommand
STATISTICS Subcommand e
CINTERVAL Subcommand. e e e
MESTIMATORS Subcommand e
MISSING Subcommand
REfErENCES. . . .o

XXVii

566

566

567

567
568

573

573
573

575

575
575

576

EXECUTE

OVBIVIBW .« . e ettt et e e e e e
EXAMDIES . ..o

EXPORT

O BV W o ettt
EXAMIPIES . .o
Methods of Transporting Portable Files.

Magnetic Tape.ot
Communications Programst
Character Translation o e e

OUTFILE Subcommand e e e
TYPE Subcommand.
UNSELECTED Subcommand e
DROP and KEEP Subcommands i e e
RENAME Subcommand e
MAP Subcommand.
DIGITS Subcommand

FACTOR

0T YT P
EXample . .
VARIABLES Subcommand i
MISSING Subcommand
METHOD Subcommand e
SELECT Subcommand. e
ANALYSIS Subcommand
FORMAT Subcommand. e e
PRINT Subcommand e e
PLOT Subcommand e e
DIAGONAL Subcommand e
CRITERIA Subcommand e e e
EXTRACTION Subcommando e e e
ROTATION Subcommand e e e

xxviii

585

585
585

586

586
587
587
588
588
589
589
589
589
590
590
591
591

592

SAVE Subcommand
MATRIX Subcommand e

Matrix QUIpULo
MatriX INPUL. . . .
Formatofthe Matrix DataFile
SPlt FileS. .
Example: Factor Correlation Matrix Outputto External File.........................
Example: Factor Correlation Matrix Output Replacing Active Dataset.
Example: Factor-Loading Matrix Output Replacing Active Dataset.
Example: Matrix Input from active dataset.
Example: Matrix Input from External File
Example: Matrix Input from active dataset.
Example: Using Saved Coefficients to Score an ExternalFile
REfErBNCES. . . .o e

FILE HANDLE

0T YT P
EXample . .o
NAME Subcommand
MODE Subcommand. e
RECFORM Subcommand.t e e e e
LRECL Subcommand.

FILE LABEL

OVBIVIBW & . e ettt e e e e e e e

FILE TYPE-END FILE TYPE

0T YT P
EXamples . .. e
Specification Order. e
Types of Files . ..o

Subcommands and Their Defaults for EachFile Type
FILE Subcommand
RECORD Subcommand e e e e e

XXiX

609

609
609
610
610
610
611

612

612

CASE Subcommand
WILD Subcommand
DUPLICATE Subcommand. e e e
MISSING Subcommand
ORDERED Subcommand e e

FILTER

VIV B ottt
EXamples . ..o

FINISH

0T YT
EXample . .o
Basic Specification. e

Command Filesot
Prompted SesSions

FIT

OV BIVI B .ot
EXample . .o
ERRORS Subcommand
OBS Subcommand
DFE and DFH Subcommands. i
Output Considerations for SSE
REfErENCES. . o

FLIP

0T YT P
EXample . .o
VARIABLES Subcommand i
NEWNAMES Subcommand

XXX

627

627
628

629

629
629
629

629
630

631

631
632
632
632
633
633
633

634

FORMATS

OV BIVI B .« .ot e
SYNtaX RUIBS. . .o o e e
EXamples . .o

FREQUENCIES

OV BIVI B . .ot
EXamples . ..o
VARIABLES Subcommand e
FORMAT Subcommand. e e e e
BARCHART Subcommand. e e
PIECHART Subcommand e e e e
HISTOGRAM Subcommand. e e
GROUPED Subcommand. e e e e e
PERCENTILES Subcommand. e e
NTILES Subcommand.
STATISTICS Subcommand e e e e
MISSING Subcommand
ORDER Subcommand

GENLIN

0T YT P
EXamples . .o
Variahle Listo
MODEL Subcommand. e
CRITERIA Subcommando e e e e e
REPEATED Subcommand e e
EMMEANS Subcommand.
MISSING Subcommand
PRINT Subcommand. e e e e
SAVE Subcommand e e
OUTFILE Subcommand o e e e

XXXi

638

638
639
641

643

643
644
645
645
645
646
647
647
649
649
649
650
651

652

GENLOG 685

OV BIVI B .« .ot e 685
EXAMDIES . ..o 687
Variable List e 687
LogitModel o e 687

Cell CoVaniates .. oottt 688
CSTRUCTURE Subcommand i e e e 688
GRESID Subcommand 689
GLOR Subcommand 690
MODEL Subcommand. 690
CRITERIA Subcommand e e e 690
PRINT Subcommand. o e e e e 691
PLOT Subcommand e 692
MISSING Subcommand 693
SAVE Subcommand e 693
DESIGN Subcommand 694
REfEIENCES. . . .o 695
GET 696
OV BIVI B .ot 696
FILE Subcommand 697
DROP and KEEP Subcommands 697
RENAME Subcommand 698
MAP Subcommand. 699
GET CAPTURE 700
0T YT P 700
CONNECT Subcommand. e e e 701
SAL Subcommand e 701
Data ConVerSiON. 701
Variable Namesand Labels 701
Missing Values e 702

XXXii

GET DATA 703

OV BIVIBW .« . ottt e e 704
TYPE Subcommand. 704
FILE Subcommand 704
Subcommands for TYPE=0DBC and TYPE=OLEDB 704
CONNECT Subcommand i e e i 705
UNENCRYPTED Subcommand e 705
SAL Subcommand e 705
ASSUMEDSTRWIDTH Subcommand. e 706
Subcommands for TYPE=XLS e 706
SHEET Subcommand 706
CELLRANGE Subcommand. e e e 707
READNAMES Subcommand. 707
Subcommands for TYPE=TXT e e e 707
ARRANGEMENT Subcommand i e 707
FIRSTCASE Subcommand e e 708
DELCASE Subcommand. 708
FIXCASE Subcommand e e 708
IMPORTCASES Subcommand e 708
DELIMITERS Subcommand i e 708
QUALIFIER Subcommand. e 709
VARIABLES Subcommand for ARRANGEMENT =DELIMITED. 709
VARIABLES Subcommand for ARRANGEMENT =FIXED............ 710
Variable Format Specifications for TYPE=TXT. 710
GET SAS 711
LY== m
DATA Subcommand 712
FORMATS Subcommand. e e e e 712
Creating a Formats File with PROC FORMAT. 113
SASto SPSS Data Conversion it 713
Variable Names. 713
Variable Labels 713
Value Labels 713
Missing Values e 713
Variable TYpeS. . .. oo 714

peedlll

GET STATA

OVBIVIBW .« . e ettt et e e e e e
FILE Keywordo e

GET TRANSLATE

VIV B .« .ottt
OPEratiONS . o . ot

Spreadsheets

Databases.

Tab-Delimited ASCIH Files.o e
FILE Subcommand
TYPE Subcommand.
FIELDNAMES Subcommando e e
RANGE Subcommand.
DROP and KEEP Subcommands o e e
MAP Subcommand.

GGRAPH

OVBIVIBW & . ettt e e e e e e e e
GRAPHDATASET Subcommand.t e e et

NAME Keyword.o e e e
DATASET KeyWord. oottt e e
VARIABLES Keyword.o
TRANSFORM Keywordttt
MISSING Keyword e
REPORTMISSING Keywordo e e e
CASELIMIT Keywordo e e e e et e
GRAPHSPEC Subcommand.o

SOURCE Keywordo
EDITABLE Keywordot e e e e e e
LABEL Keyword.o e
DEFAULTTEMPLATE Keywordt e e
TEMPLATE Keywordottt e e e e e
EXamples . .o

XXXiV

715

115
115

716

716
mni
mni
19
719
720
720
121
21
122
123

724

GLM

Custom Hypothesis Specifications i e

LMATRIX, MMATRIX, and KMATRIX Subcommands.
CONTRAST Subcommand e e

GLM: Univariate

Overview
Example.......
GLM Variable List

RANDOM Subcommand e
REGWGT Subcommand e e e e
METHOD Subcommand e
INTERCEPT Subcommand. i e e e e
MISSING Subcommand
CRITERIA Subcommando e e e e
PRINT Subcommand. e e
PLOT Subcommandot e e
TEST Subcommand.
LMATRIX Subcommand
KMATRIX Subcommand
CONTRAST Subcommand. e e e
POSTHOC Subcommand. e e e
EMMEANS Subcommand.
SAVE Subcommand e
OUTFILE Subcommand o e e e
DESIGN Subcommand

GLM: Multivariate

Overview
GLM Variable List

XXXV

741

742
743
145
746

746
748

749

750
151
152
152
753
753
754
154
755
155
157
758
758
760
760
762
765
766
167
167

769

PRINT Subcommand. e e e 7

MMATRIX Subcommand. 772
GLM: Repeated Measures 774
OV BIVI B .« .ot e 774
EXamMpIE . . e 776
GLM Variable List.o 776
WSFACTOR Subcommand e e e 1717
Contrasts for WSFACTOR. e e e 778
WSDESIGN Subcommand 780
MEASURE Subcommand e 781
EMMEANS Subcommand. 782
GRAPH 783
VIV B .« .ottt 786
EXAMIPIES . . oo 187
TITLE, SUBTITLE, and FOOTNOTE Subcommands i, 787
BAR Subcommand e 788
LINE Subcommand. 788
PIE Subcommand 789
HILO Subcommand. 789
ERRORBAR Subcommand. e 790
SCATTERPLOT Subcommand i e et e 790
HISTOGRAM Subcommand. e e e 791
PARETO Subcommand 791
PANEL Subcommand 791
COLVAR and ROWVAR Keywords.ot e e 792
COLOP and ROWOP Keywords.o e e et e e 792
INTERVAL Subcommand. e 793
ClKeYWOrd . . .o 794
STDDEV Keyword e 794

SE Keyword.o 794
TEMPLATE Subcommand e 794
Elements and Attributes Independent of Chart TypesorData....................... 794

XXXVi

Elements and Attributes Dependenton ChartType. 795

Elements and Attributes DependentonData 795
MISSING Subcommand 795
HILOGLINEAR 797
OV BIVI B .« .ot e 797
EXamMpIE . . e 799
Variable List 799
METHOD Subcommand e 800
MAXORDER Subcommand e 800
CRITERIA Subcommand o e e e e 801
CWEIGHT Subcommand e e 801
PRINT Subcommand. o e e e e 803
PLOT Subcommand e 804
MISSING Subcommand 804
DESIGN Subcommand 804
REfErENCES. . o 805
HOMALS 806
OV VI B .« .ottt 806
EXamMPlE . .o 808
VARIABLES Subcommand 808
ANALYSIS Subcommand e 809
NOBSERVATIONS Subcommand. e 809
DIMENSION Subcommand. 809
MAXITER Subcommand 810
CONVERGENCE Subcommand e 810
PRINT Subcommand. e e e e e 810
PLOT Subcommand 810
SAVE Subcommand e 812
MATRIX Subcommand 813

XXXVii

HOST

Quoted STFINGS.ot
TIMELIMIT Keyword. . . . oo ot e e e et ettt
Using TIMELIMIT to Return Controlto SPSS.
Working Directory
UNC Paths on Windows Operating Systems. ittt

IF

OV BIVI B .ot
EXAMDIES . ..o e
OPEratioNS . . . oot

Numeric Variables.
String Variables.
Missing Values and Logical Operators.t

IGRAPH

OV BTV B . ottt e e
General SYNtaX. . ..o

X1, Y, and X2 Subcommands
CATORDER Subcommandt e e e
X1LENGTH, YLENGTH, and X2LENGTH Subcommands
NORMALIZE Subcommand e e
COLOR, STYLE, and SIZE Subcommandsci ..
CLUSTER Subcommand. e e
SUMMARYVAR Subcommand e
PANEL Subcommand. e
POINTLABEL Subcommand ot e
COORDINATE Subcommand. e e
EFFECT Subcommand e e
TITLE, SUBTITLE, and CAPTION Subcommands
VIEWNAME Subcommand. e
CHARTLOOK Subcommand e e e
REFLINE Subcommand i e e e
SPIKE Subcommand e

XXXViii

814

814
815
815
815
815
816
816

818

818
819
822

822
822
822

824

FORMAT Subcommand e 835

KEY Keyword. . ..o e 835
Element SyntaX. 835
SCATTER Subcommand e 835

AREA Subcommand. 836

BAR Subcommand. 837

PIE Subcommand 838

BOX Subcommand. 839

LINE Subcommand 840
ERRORBAR Subcommand e 842
HISTOGRAM Subcommand e e 843
FITLINE Subcommand e e e e 844
Summary FUNCHIONS o 845
IMPORT 847
OVBIVIBW .« ettt et e e e e e e 847
EXAMDIES . .o e 848
FILE Subcommand 848
TYPE Subcommand. 848
DROP and KEEP Subcommands e 848
RENAME Subcommand e e 849
MAP Subcommand. e 849
INCLUDE 851
017 =1 851
EXamples . .o 852
FILE Subcommando 852
INFO 853
INPUT PROGRAM-END INPUT PROGRAM 854
OVBIVIBW .« . ettt et e e e e e e 854
EXAMPIES . ..o e 855

XXXiX

INPUL Programs. e

INPUL State. . . o
More Examples.

INSERT

OVERVIEW . . o
FILE Keywordo e e
SYNTAX KeyWord . . .ot
ERROR Keyword o e
CD KeywWordo e
INSERT vs. INCLUDE o e e e e e e e

KEYED DATA LIST

OV BIVI B .ot
EXAMDIES . .o e
FILE Subcommand
KEY Subcommand
IN Subcommand.
TABLE and NOTABLE Subcommands e

KM

OV BIVI B .ot
EXAMDIES . .o e
Survival and Factor Variables
STATUS Subcommand i e e e e e
STRATA Subcommand e e
PLOT Subcommandot e e
ID Subcommand.
PRINT Subcommand. o e e e e e
PERCENTILES Subcommand. e e e
TEST Subcommand.o
COMPARE Subcommand i e e

x|

858

858
859
859
859
860
860

861

861
863
865
865
865
866

867

TREND Subcommand e
SAVE Subcommand

LEAVE

OVBIVIBW .« . e ettt et e e e e e
EXAMDIES . ..o

LIST

VIV B .« .ottt
EXAMIPIES . . oo
VARIABLES Subcommand
FORMAT Subcommand. e e
CASES Subcommand

LOGISTIC REGRESSION

OV BIVI B .ot
EXAMDIES . .o e
VARIABLES Subcommand e e
CATEGORICAL Subcommand e e e
CONTRAST Subcommand. e e e
METHOD Subcommand e
SELECT Subcommand. e
ORIGIN and NOORIGIN Subcommands.t e e
ID Subcommand.
PRINT Subcommand. o e e e
CRITERIA Subcommand e e e e
CLASSPLOT Subcommand e e e
CASEWISE Subcommand
MISSING Subcommand
OUTFILE Subcommando e e e e
SAVE Subcommand e
EXTERNAL Subcommand e e
REfErENCES. . o

xli

876

876
8717

878

878
879
879
880
880

882

LOGLINEAR 896

OV BIVI B .« .ot e 897
EXAMDIES . ..o 899
Variable List o e 899
LogitModel o e 900

Cell CoVaniates .. oottt 900
CWEIGHT Subcommand e e e 901
GRESID Subcommand 902
CONTRAST Subcommand. e e e 902
CRITERIA Subcommand e e e e 904
PRINT Subcommand. e e e 905
PLOT Subcommandot e 906
MISSING Subcommand 906
DESIGN Subcommand 907
LOOP-END LOOP 909
VIV B .« .ottt 909
EXAMIPIES . . oo 910

F ey WO . . .o In
Indexing Clauseot 912
BY Keyword 916
MissSing Values o e 917
Creating Data.ot 918
MANOVA 919
OV BIVI B . .ot 921
MANOVA and General Linear Model (GLM) 921
MANOVA: Univariate 923
OV BIVI B . .ot 924
EXaMpIE . . e 925
MANOVA Variable List e e 925

xlii

ERROR Subcommand e 926

CONTRAST Subcommand. e e e e 927
PARTITION Subcommand. e e e e 929
METHOD Subcommand e e 930
PRINT and NOPRINT Subcommands. i e 931
CELLINFO Keywordottt e e e et ettt 932
PARAMETERS Keyword. e e 933
SIGNIF Keywordo 933
HOMOGENEITY Keyword. e e 934
DESIGN Keyword.o e 934
ERROR Keywordo e e e e 934
OMEANS Subcommand i 935
PMEANS Subcommand 935
RESIDUALS Subcommand i e e e 936
POWER Subcommand 937
CINTERVAL Subcommand. i e e e 937
PLOT Subcommand 938
MISSING Subcommand 939
MATRIX Subcommand 939
Format of the SPSS Matrix DataFile. i, 940
SplitFiles and Variable Order. 940
Additional Statistics. e 940
ANALYSIS Subcommand e 942
DESIGN Subcommand e 942
Partitioned Effects: Numberin Parentheses. i, 943
Nested Effects: WITHIN Keyword e i 944
Simple Effects: WITHIN and MWITHIN Keywords i, 944
Pooled Effects: Plus Sign. 945
MUPLUS Keywordo e 945
Effects of Continuous Variables 946
Error Terms for Individual Effects. 947
CONSTANT KeYWOrd . . oo ottt e e e e e ettt 947
REfEIENCES. . . o e 948
MANOVA: Multivariate 949
OV IV B .ot 950
MANOVA Variable List e 951
TRANSFORM Subcommand e e e 951
Variable Lists.o 951

xliii

CONTRAST, BASIS, and ORTHONORM Keywords. 952

Transformation Methods 952
RENAME Subcommand 954
PRINT and NOPRINT Subcommands. i e 955

ERROR Keywordo e e e e e 955

SIGNIFKeyword 956

TRANSFORM Keywordo e e e 956

HOMOGENEITY Keyword. o e 957
PLOT Subcommandot e 957
PCOMPS Subcommand 957
DISCRIM Subcommand e 958
POWER Subcommand 958
CINTERVAL Subcommand.o e e e 959
ANALYSIS Subcommand e 959

CONDITIONAL and UNCONDITIONAL Keywordso 960

MANOVA: Repeated Measures 962
OV BIVI B . .ot 962
EXaMpIE . . e 963
MANOVA Variable List e e 964
WSFACTORS Subcommand e 965

CONTRAST for WSFACTORS e 966

PARTITION for WSFACTORS e 967
WSDESIGN Subcommand 967

MWITHIN Keyword for Simple Effects. i 968
MEASURE Subcommand 968
RENAME Subcommand e 969
PRINT Subcommand. e 970
REfErBNCES. . . .o 970

MAPS 972
OV BIVI B . .o e 973
GVAR Subcommand 974
XY Subcommand 974
LOOKUP Subcommand e e e 975

xliv

GSET Subcommand e 976

LAYER Keywordo e 976
SHOWLABEL Subcommand e e 976
TITLE Subcommand 976
GVMISMATCH Subcommand e e e 976
ROVMAP Subcommand 977
SYMBOLMAP Subcommand. e 978
DOTMAP Subcommand e 979
IVMAP Subcommand 979
BARMAP Subcommand 980
PIEMAP Subcommand 981
SUmMMary FUNCHIONS e 982

MATCH FILES 984
VIV B .« .ottt 984
FILE Subcommand 987

TextData Files. 987
BY Subcommand 988

Duplicate Cases. . ..ot it 988
TABLE Subcommand 988
RENAME Subcommand e 989
DROP and KEEP Subcommands i e 990
IN Subcommand. 990
FIRST and LAST Subcommands i e e 991
MAP Subcommand. 992

MATRIX-END MATRIX 993
VIV B .« .ottt e 995
TermMiNOlOgY . o vt et e e 995
Matrix Variables e 996

String Variables in Matrix Programs. 996
Syntax of Matrix Languageot e 996

Comments in Matrix Programs. 997

Matrix Notation in SPSS e 997

Matrix Notation Shorthand 998

xlv

Extraction of an Element, a Vector,ora Submatrix............., 998

Construction of a Matrix from Other Matrices 999
Matrix Operations. oo 1000
Conformable Matrices. o e e 1000
Scalar EXpansion. 1000
Arithmetic Operators.o 1001
Relational Operatorsttt e e 1002
Logical Operatorsottt 1002
Precedence of Operators. it 1002
MATRIX and Other SPSS Commands i 1003
Matrix Statements. o e 1004
Exchanging Data with SPSS DataFiles i ... 1004
Using an Active Dataset. e 1004
MATRIX and END MATRIX Commandst 1005
COMPUTE Statementt e e e e e e e 1005
String Values on COMPUTE Statements.t 1005
Arithmetic Operations and Comparisonsttt 1006
Matrix FUNCIONS 1006
CALL Statement 1012
PRINT Statemento 1013
Matrix EXpression e 1013
FORMAT Keywordo e e e e e 1014
TITLE Keyword e e e e 1014
SPACE KeyWord.o 1014
RLABELS Keyword. e e e 1014
RNAMES Keyword.o 1015
CLABELS Keyword.o 1015
CNAMES Keyword.o e e e 1015
Scaling Factorin Displays 1015
Matrix Control StructUres 1016
DO I StrUCtUreS . .o ot e 1016
LOOP StrUCIUIES . o v ot et 1017
Index Clause onthe LOOP Statement. 1018
IF Clause onthe LOOP Statement. i 1018
IF Clause onthe END LOOP Statement. 1018
BREAK Statement e 1019
READ Statement: Reading CharacterData it 1019
Variable Specification 1019
FILE Specification e 1020
FIELD Specificationot e 1020
SIZE Specification 1021
MODE Specification.t 1021

xlvi

REREAD Specification 1022

FORMAT Specification. e 1022
WRITE Statement: Writing CharacterData 1022
Matrix Expression Specification. 1022
OUTFILE Specificationt e e 1023
FIELD Specification it e e e 1023
MODE Specification. it 1024
HOLD Specificationt e 1024
FORMAT Specification. e 1024
GET Statement: Reading SPSSDataFiles i 1025
Variable Specification 1025
FILE Specification e 1025
VARIABLES Specification 1026
NAMES Specification e 1026
MISSING Specification 1026
SYSMIS Specification i e 1026
SAVE Statement: Writing SPSS DataFiles. 1027
Matrix Expression Specification. 1027
OUTFILE Specificationt e e e e 1028
VARIABLES Specification e 1028
NAMES Specification e 1029
STRINGS Specification 1029
MGET Statement: Reading SPSS Matrix DataFiles............. 1029
FILE Specification e 1029
TYPE Specification 1030
Names of Matrix Variables from MGET 1030
MSAVE Statement: Writing SPSS Matrix DataFiles 1031
Matrix Expression Specification. 1032
TYPE Specification 1032
OUTFILE Specificationt e e e 1032
VARIABLES Specification 1032
FACTOR Specification i e 1033
FNAMES Specification 1034
SPLIT Specificationo 1034
SNAMES Specification i 1034
DISPLAY Statementottt e 1035
RELEASE Statement i 1035
Macros Using the Matrix Language i 1035

xlvii

MATRIX DATA 1036

OV BIVIBW . .ot e 1036
EXAMPIES . ..o e 1038
OperationS . . . oo 1041
Format of the Raw Matrix DataFile 1041
VARIABLES Subcommand e 1042
Variable VARNAME _ 1042
Variable ROWTYPE e 1042
FILE Subcommand 1044
FORMAT Subcommand. i e e e e 1044
Data-Entry Format o 1044
Matrix Shape. e 1045
Diagonal Values. i 1045
SPLIT Subcommand o 1046
FACTORS Subcommand e e 1047
CELLS Subcommand. 1048
CONTENTS Subcommand. e e e 1049
Within-Cells Record Definition. o 1051
Optional Specification When ROWTYPE_ IsExplicit. 1052

N Subcommand e 1053
MCONVERT 1054
OV BIVIBW .« .ot 1054
EXamples . ..o e 1055
MATRIX Subcommand 1055
REPLACE and APPEND Subcommands i 1056
MEANS 1057
OV BIVIBW . .ot e 1057
EXAMPIES . ..o e 1058
TABLES Subcommand e 1059
CELLS Subcommand. o 1059
STATISTICS Subcommand e et 1060

xlviii

MISSING Subcommand 1061

ReferenCes. . .. 1061
MISSING VALUES 1062
OVBIVIBW & . ettt et e e e e e e e 1062
EXAMPIES . ..o e 1063
Specifying Ranges of Missing Values 1064
MIXED 1065
OVBIVIBW & . . e e ettt e e e e e e e e 1066
EXamples . ..o e 1067
Case FreqUenCY . ..o 1069
Covariance Structure List.t 1070
Variable Listo 1072
CRITERIA Subcommand e e e 1072
EMMEANS Subcommand. 1073
FIXED Subcommand 1075
METHOD Subcommand 1076
MISSING Subcommand 1076
PRINT Subcommand. e e 1077
RANDOM Subcommand i e e e 1077
REGWGT Subcommand e 1079
REPEATED Subcommand e e e 1079
SAVE Subcommand 1081
TEST Subcommand. 1081
Interpretation of Random Effect Covariance Structures. 1083
MODEL CLOSE 1086
017 V=1 1086

xlix

MODEL HANDLE 1087
OVBIVIBW & . ettt et e e e e e e e 1087
NAME Subcommand 1088
FILE Keywordo e e 1088
OPTIONS Subcommand i e e e 1088

MISSING Keyword e 1089
MAP Subcommand. 1090

MODEL LIST 1091
017 V=1 1091

MODEL NAME 1092
OVBIVIBW & . e ettt et e e e e e e e 1092
EXaMpIE . . e 1092

MRSETS 1094
Y=Y <11 1094
Syntax Conventionst 1095
MDGROUP Subcommand 1095
MCGROUP Subcommand 1096
DELETE Subcommand. i e 1096
DISPLAY Subcommand. 1097

MULT RESPONSE 1098
017 V=1 1098
GROUPS Subcommand. 1100
VARIABLES Subcommand 1101
FREQUENCIES Subcommand e e 1102
TABLES Subcommand 1102

PAIRED Keywordo e e e 1104

CELLS Subcommand. 1104

BASE Subcommand 1105
MISSING Subcommand 1105
FORMAT Subcommand. 1106
MULTIPLE CORRESPONDENCE 1108
OV BIVIBW . .ot e 1109
EXamMpIE . .. e e 1110
OPLiONS. . oo 1M
VARIABLES Subcommand 1111
ANALYSIS Subcommand 1112
DISCRETIZATION Subcommand e e e 1112
GROUPING Keywordo e e e 1113
NCAT Keywordo e e 1113
MISSING Subcommand 1113
PASSIVE Keyword 1114
ACTIVEKeywordo e 1114
SUPPLEMENTARY Subcommand e 1114
CONFIGURATION Subcommand e 1115
DIMENSION Subcommand. e e 1115
NORMALIZATION Subcommand. e 1115
MAXITER Subcommand e 1116
CRITITER Subcommand e e e 1116
PRINT Subcommand. e e 1116
PLOT Subcommand e 1118
SAVE Subcommand 1120
OUTFILE Subcommand e e e e 1121
MVA 1122
OV BIVI B .« .\ ot 1123
Syntax RUIBS. . .o e 1124
SYMDBOIS. . o 1125
Missing Indicator Variables 1125
VARIABLES Subcommand e 1125
CATEGORICAL Subcommand e e e 1125

MAXCAT Subcommand. 1126

ID Subcommand. i 1126
NOUNIVARIATE Subcommand i e 1126
TTEST Subcommand. o e 1127
Display of Statistics.o 1127
CROSSTAB Subcommand e e e 1128
MISMATCH Subcommand e 1129
DPATTERN Subcommand e e e 1129
MPATTERN Subcommand. e 1130
TPATTERN Subcommand i e e 1131
LISTWISE Subcommand. e e e e 1131
PAIRWISE Subcommand e 1132
EM Subcommand 1132
REGRESSION Subcommand e e 1134
N OF CASES 1136
OV IV B .ottt 1136
NAIVEBAYES 1138
OV BIVIBW . .ot e e 1138
EXAMPIES . ..o e e 141
Variable Listso 1142
EXCEPT Subcommand e 1143
FORCE Subcommand e e 1143
TRAININGSAMPLE Subcommand. e 1144
SUBSET Subcommand e 1144
CRITERIA Subcommand e e et 1145
MISSING Subcommand 1146
PRINT Subcommand. i e e 1146
SAVE Subcommand e 1147
OUTFILE Subcommand e e e e e 1147

NEW FILE 1148

OV BIVIBW . .ot e 1148
NLR 1149
OV BIVIBW .« .ot 1150
OPBratiONS .« . oottt 1151
Weighting Casesottt 1152
Missing Values 1152
EXample . .o 1152
MODEL PROGRAM Command. e e 1153
Caution: Initial Values o 1153
DERIVATIVES Command e e e 1154
CONSTRAINED FUNCTIONS Command. ottt et 1155
CLEAR MODEL PROGRAMS Commando 1155
CNLR and NLR Commandscitir ettt 1155
OUTFILE Subcommand e e e 1156
FILE Subcommand i 1156
PRED Subcommand 1157
SAVE Subcommand e 1157
CRITERIA Subcommand e e e e e 1159
Checking Derivatives for CNLRand NLR. i 1159
lteration Criteriafor CNLR e 1159
lteration Criteriafor NLR 1161
BOUNDS Subcommand 1162
Simple Bounds and Linear Constraints. i, 1162
Nonlinear Constraints i e e e 1162
LOSS Subcommand e 1163
BOOTSTRAP Subcommand. e e 1163
REfErBNCES. . o 1164
NOMREG 1165
0T T 1166
Variable List 1167
CRITERIA Subcommand e e e 1168

FULLFACTORIAL Subcommandt e e e 1168

INTERCEPT Subcommand. i e e 1169
MISSING Subcommand 1169
MODEL Subcommand. 1169
STEPWISE Subcommand e 1172
OUTFILE Subcommand e e e 1173
PRINT Subcommand. 1174
SAVE Subcommand 1175
SCALE Subcommand e 1175
SUBPOP Subcommand.o 1176
TEST Subcommand. 1176
NONPAR CORR 1178
0 T YT 1178
EXamples . .o 1179
VARIABLES Subcommand e 1179
PRINT Subcommand. e 1180
SAMPLE Subcommand. 1180
MISSING Subcommand 1181
MATRIX Subcommand 1181
Formatof the Matrix DataFile 1182
SpltFIleS. . .o 1182
Missing Values i 1182
EXAMPIES. . . 1182
NPAR TESTS 1184
OV VI B .ottt 1185
BINOMIAL Subcommand 1186
CHISQUARE Subcommand e 1187
COCHRAN Subcommand e e e 1188
FRIEDMAN Subcommand. e e 1189
J-TSubcommand 1190
K-S Subcommand (One-Sample). 1190
K-S Subcommand (Two-Sample). 1191
K-W Subcommand 1192

liv

KENDALL Subcommand e
M-W Subcommand.
MCNEMAR Subcommand.
MEDIAN Subcommand.
MH Subcommand. e
MOSES Subcommand.
RUNS Subcommand
SIGN Subcommand e
W-W Subcommand
WILCOXON Subcommand.t et e
STATISTICS Subcommand e e e
MISSING Subcommand
SAMPLE Subcommand. e
METHOD Subcommand e e
REfEIBNCES. . .ot e

NUMERIC

VIV B ottt
EXamples . .o

OLAP CUBES

OV BIVIBW .« .ot
EXamples . ..o e
OPliONS. . oot
TITLE and FOOTNOTE Subcommands e
CELLS Subcommand.
CREATE Subcommand e e

oMS

OVBIVIBWY & . ettt e et e e e e e
Basic Operationot
SELECT Subcommand.

1203
1204

1205

1205
1206
1206
1207
1207
1208

IF Subcommand 1215

COMMANDS Keyword.o e e e e e e 1215
SUBTYPES Keywordot e et 1216
LABELS Keyword. 1216
INSTANCES Keyword e e 1217
Wildcardso 1217
EXCEPTIF Subcommando 1218
DESTINATION Subcommand e e 1218
FORMAT Keywordot e e e e e e e e 1219
NUMBERED Keyword e e e et 1219
Chartand Tree Imagesfor HTML e 1220
OUTFILE Keywordo e e e e e 1220
XMLWORKSPACE Keywordot e e e 1221
OUTPUTSET Keywordo e e e e 1221
FOLDER Keyword. e e e e e 1221
VIEWER Keywordo e e e e e 1222
COLUMNS Subcommand e e e e e 1222
DIMNAMES Keyword e e 1223
SEQUENCE Keyword e e e e e 1224
TAG Subcommand e 1225
NOWARN Subcommando 1225
Routing Qutputto SAV Files 1226
Data File Created fromOne Table. e 1226
Data Files Created from Multiple Tables. i i 1228
Data Files Not Created from Multiple Tables. 1230
Controlling Column Elements to Control Variables inthe DataFile 1231
Variable Names. o e 1233
OXML Table Structure.ot e e e e e e e 1234
Command and Subtype ldentifiers 1237
OMSEND 1238
OV BIVI B .« .\ ot 1238
TAG Keyword . ..o e 1238
FILE Keyword 1239
LOG Keyword 1239

lvi

OMSINFO

OVBIVIBW & . ettt et e e e e e e e

OMSLOG

OV BIVIBW .« .ot
FILE Subcommand
APPEND Subcommand. e
FORMAT Subcommand. e e e

ONEWAY

OV BIVIBW . .ot e
EXaMpIE . . e
Analysis List.
POLYNOMIAL Subcommandt e e et e
CONTRAST Subcommand. e e e e
POSTHOC Subcommand. e
RANGES Subcommand.
PLOT MEANS Subcommand. e
STATISTICS Subcommand e e
MISSING Subcommand i
MATRIX Subcommand e

Matrix QUIPUL . . .o e
MatriX INpUL. . ..o e
Formatofthe Matrix DataFile
SpltFIleS. . .o
Missing Values i e
EXamMpIE. . .
EXamMpIE. . .
EXample. . ..o
EXample. ...
REfrENCES. . o

Ivii

1240

1240

1241

1241
1242
1242
1242

OPTIMAL BINNING 1253

OVBIVIBW & . ettt et e e e e e e e 1253
EXAMPIES . ..o e 1255
VARIABLES Subcommand 1255
CRITERIA Subcommand e e e 1256
MISSING Subcommand e 1257
OUTFILE Subcommando e e e e 1258
PRINT Subcommand e e 1258
ORTHOPLAN 1259
OVBIVIBW & . . e e ettt e e e e e e e e 1259
EXamples . ..o e 1260
FACTORS Subcommand e e 1261
REPLACE Subcommand 1262
OUTFILE Subcommand o e 1262
MINIMUM Subcommand e e e e 1262
HOLDOUT Subcommand. e e 1263
MIXHOLD Subcommandt e e e e e 1263
OUTPUT ACTIVATE 1264
OVBIVIBW & . e ettt et e e e e e e 1264
OUTPUT CLOSE 1266
017 V=1 1266
OUTPUT DISPLAY 1268
OVBIVIBW & . ettt e e e e e e e e e e e e 1268

Iviii

OUTPUT NAME 1269
OVBIVIBW & . ettt et e e e e e e e 1269
OUTPUT NEW 1271
OVBIVIBW & . . e e ettt e e e e e e e e 1271
OUTPUT OPEN 1274
017 V=1 1274
OUTPUT SAVE 1277
OVBIVIBW & . e ettt et e e e e e e e 1277
OVERALS 1279
OVBIVIBW & . . e e ettt e e e e e e e e 1280
EXamples . ..o e 1281
VARIABLES Subcommand 1281
ANALYSIS Subcommand 1282
SETS Subcommand 1282
NOBSERVATIONS Subcommand. e e 1283
DIMENSION Subcommandt 1283
INITIAL Subcommand.o e 1283
MAXITER Subcommand 1283
CONVERGENCE Subcommand e e e 1284
PRINT Subcommand. e e 1284
PLOT Subcommand e 1284
SAVE Subcommand 1286
MATRIX Subcommand 1287

lix

PACF 1288

OV BIVIBW . .ot e 1288
EXamMpIE . .. e e 1289
VARIABLES Subcommand e 1290
DIFF Subcommand 1290
SDIFF Subcommand e 1290
PERIOD Subcommand e 1290
LN and NOLOG Subcommands i e 1291
SEASONAL Subcommand.t e 1291
MXAUTO Subcommand 1292
APPLY Subcommand 1292
REfEIBNCES. . o e 1293
PARTIAL CORR 1294
OV BIVIBW .« .ot 1294
EXample . ..o e 1295
VARIABLES Subcommand i 1295
SIGNIFICANCE Subcommand i e e 1297
STATISTICS Subcommand e e e 1297
FORMAT Subcommand. e e e 1298
MISSING Subcommand 1298
MATRIX Subcommand e 1298
Matrix QUIPUL . .. oo e 1299
MatriX INpUL. . .. e 1299
Formatofthe Matrix DataFile 1299
SIS, . o 1300
Missing Values e 1300
EXamples. . ..o 1300
PER CONNECT 1302
0 T YT 1302
SERVER Subcommand e 1303
LOGIN Subcommand 1303

PERMISSIONS 1304

OV BIVIBW . .ot e 1304
PERMISSIONS Subcommand e 1304
PLANCARDS 1305
OV IV B .ottt 1305
EXamMPIES . .o 1306
FACTORS Subcommand e e e 1307
FORMAT Subcommand. e e e 1307
OUTFILE Subcommand e e e 1308
TITLE Subcommand 1308
FOOTER Subcommand i e e e e 1309
PLUM 1311
OVBIVIBW . .o e 1311
EXaMpIE . . e 1312
Variable List o 1312
Weight Variable 1313
CRITERIA Subcommand e e e e 1313
LINK Subcommand. e 1313
LOCATION Subcommand e e e e 1314
MISSING Subcommand i e 1315
PRINT Subcommand. e 1315
SAVE Subcommand 1316
SCALE Subcommand e 1316
TEST Subcommand. 1317
POINT 1319
OV BIVIBW . .ot e e 1319
EXAMPIES . ..o e e 1320

Ixi

FILE Subcommand 1321

KEY Subcommand 1321
PPLOT 1323
OV BIVIBW . .ot e 1324
EXamMpIE . .. e e 1325
VARIABLES Subcommand e 1325
DISTRIBUTION Subcommand. e e 1325
FRACTION Subcommand i e e e e e 1326
TIES Subcommand 1327
TYPE Subcommand. 1327
PLOT Subcommandt e 1328
STANDARDIZE and NOSTANDARDIZE Subcommands. 1329
DIFF Subcommand 1329
SDIFF Subcommand e 1329
PERIOD Subcommand e 1330
LN and NOLOG Subcommands i e e 1330
APPLY Subcommand e 1331
REfEIBNCES. . . .o e 1332
PREDICT 1333
OV BIVIBW .« .ot 1333
Syntax RUIBS. . .o e 1334
Date Specifications e 1334

Case Specifications. 1334

Valid Rangeo 1335
EXamples . .o 1335
PREFSCAL 1337
OV BIVI B .« .\ ot 1338
EXamples . ..o 1339
VARIABLES Subcommand 1340
INPUT Subcommand 1340

Ixii

PROXIMITIES Subcommand e e e 1342

WEIGHTS Subcommand e e 1343
INITIAL Subcommand. e 1343
CONDITION Subcommandt e e e e 1345
TRANSFORMATION Subcommand i i 1345
MODEL Subcommand. 1347
RESTRICTIONS Subcommand. e e 1347
PENALTY Subcommand e 1348
CRITERIA Subcommand e e e e 1349
PRINT Subcommand. 1349
PLOT Subcommand e 1350
OPTIONS Subcommand 1353
OUTFILE Subcommand e e e e 1353
PRESERVE 1355
0 T YT 1355
EXample . .o 1355
PRINCALS 1356
OV BIVIBW .« .ot 1356
EXample . .o e 1358
VARIABLES Subcommand 1358
ANALYSIS Subcommand e 1359
NOBSERVATIONS Subcommand. e 1359
DIMENSION Subcommand. e e e 1360
MAXITER Subcommand 1360
CONVERGENCE Subcommand e 1360
PRINT Subcommand. 1360
PLOT Subcommand e e 1361
SAVE Subcommand e 1363
MATRIX Subcommand 1364

Ixiii

PRINT 1365
OVBIVIBW & . ettt et e e e e e e e 1365
EXAMPIES . ..o e 1366
FOrmats . . o 1367
SIS o o et 1368
RECORDS Subcommand e e e 1369
OUTFILE Subcommando e e e e 1369
TABLE Subcommand 1370

PRINT EJECT 1371
OVBIVIBW & . . e e ettt e e e e e e e e 1371
EXamples . ..o e 1372

PRINT FORMATS 1374
OVBIVIBW & . e ettt et e e e e e e 1374
EXAMPIES . ..o e e 1375

PRINT SPACE 1377
OVBIVIBW & . e ettt et e e e e e e e 1377
EXAMPIES . ..o e e 1377

PROBIT 1379
OVBIVIBW & . ettt e e e e e e e e e e e e 1379
EXamMPIES . .o 1381
Variable Specification. e 1382
MODEL Subcommand. 1383
LOG Subcommand 1383
CRITERIA Subcommand e e 1384
NATRES Subcommand 1384
PRINT Subcommand. e 1386

Ixiv

MISSING Subcommand 1386

REfErBNCES. . .o 1387
PROCEDURE OUTPUT 1388
OV BIVIBW . .ot e 1388
EXAMPIES . ..o e 1388
PROXIMITIES 1390
OV IV B .ottt 1391
EXamMple . . . 1392
Variable Specification. e 1392
STANDARDIZE Subcommand e e 1392
VIEW Subcommand e 1393
MEASURE Subcommand 1393
MeasuresforintervalData i 1394
Measures for Frequency-CountData. 1395
MeasuresforBinaryData e 1395
Transforming Measures in Proximity Matrix. 1400
PRINT Subcommand. o e e e 1400
ID Subcommand. 1401
MISSING Subcommand e 1401
MATRIX Subcommand e 1401
Matrix QUIPUL . . .o 1402
MatriX INpUL. . .. e 1402
Formatofthe Matrix DataFile 1403
SpPlitFiles. .o 1403
Example: Matrix Qutput to SPSS-format External File. 1403
Example: Matrix Qutputto External File 1404
Example: Matrix OQutputto Working File 1404
Example: Matrix Input from External File 1404
Example: Matrix Input from Working File L 1404
Example: Matrix Qutput to and Then Input from Working File 1405
Example: Q-factor Analysis 1405
REfrBNCES. . o 1406

Ixv

PROXSCAL 1407

OV BIVIBW . .ot e 1408
Variable List Subcommand 1409
TABLE Subcommand e 1410
SHAPE Subcommand e 1412
INITIAL Subcommand. e 1413
WEIGHTS Subcommand e 1414
CONDITION Subcommand i e e e e 1414
TRANSFORMATION Subcommandt e 1415
SPLINE Keyword 1415
PROXIMITIES Subcommand e e 1416
MODEL Subcommand. 1416
RESTRICTIONS Subcommand. e 1417
VARIABLES Keyword. e e e 1417
SPLINE Keyword 1418
ACCELERATION Subcommand e 1418
CRITERIA Subcommand e e e 1419
PRINT Subcommand. 1419
PLOT Subcommand e e 1421
OUTFILE Subcommand e 1422
MATRIX Subcommand e 1423
QUICK CLUSTER 1424
OVBIVIBW . .ot 1424
EXAMpIE . .. e 1426
Variable Listo 1426
CRITERIA Subcommand e e e e 1426
METHOD Subcommand e 1427
INITIAL Subcommand. e 1427
FILE Subcommand 1428
PRINT Subcommand. i e e 1428
OUTFILE Subcommand e e e e 1429
SAVE Subcommand 1429
MISSING Subcommand e 1430

Ixvi

RANK 1431

OV BIVIBW . .ot e 1431
EXamMpIE . .. e e 1432
VARIABLES Subcommand e 1432
Function Subcommands 1433
INTO Keyword.o e e e 1433

TIES Subcommand 1434
FRACTION Subcommand e e 1435
PRINT Subcommand. 1436
MISSING Subcommand i 1436
REfErBNCES. . ot 1436
RATIO STATISTICS 1437
0 T YT 1437
Case FreqUenCy o 1438
Variahle Listo 1438
MISSING Subcommand e 1438
OUTFILE Subcommand e e e e 1439
PRINT Subcommand. e 1440
READ MODEL 1442
0 T YT 1442
EXample . .o 1443
FILE Subcommando 1443
KEEP and DROP Subcommandst e 1443
TYPE Subcommand. 1444
TSET Subcommand. 1444
RECODE 1445
OV BIVI B .« . ot 1445

Ixvii

Syntax RUleS.o 1446

Numeric Variables. e 1446

String Variables. 1447
OPEIatiONS .« . ot e 1447
Numeric Variables. e 1447

String Variables. 1447
EXamples . ..o 1447
INTO KeyWord . ..ot e e e e 1448
Numeric Variables. 1448

String Variables. 1449
CONVERT KeywWord. . ..ot e e e e e e e e e 1449
RECORD TYPE 1451
OV BIVIBW . .ot e 1451
EXAMPIES . ..o e e 1452
OTHER Keywordo e e 1454
SKIP Subcommand. e 1455
CASE Subcommand e 1456
MISSING Subcommand o 1456
DUPLICATE Subcommand. e e e 1457
SPREAD Subcommand e 1458
REFORMAT 1460
VIV B . ottt 1460
EXample . .. 1460
REGRESSION 1462
0 T T 1463
EXamples . ..o 1466
VARIABLES Subcommand e 1467
DEPENDENT Subcommand. e e 1468
METHOD Subcommand e e 1468

Ixviii

STATISTICS Subcommand e e e 1470

Global Statistics.ot 1470
Equation Statistics. i 1470
Statistics for the Independent Variables. 147
CRITERIA Subcommand e e 147
Tolerance and Minimum Tolerance Tests 1472
Criteria for Variable Selection e 1472
Confidence Intervals i e 1473
ORIGIN and NOORIGIN Subcommands. 1473
REGWGT Subcommand e e e e 1473
DESCRIPTIVES Subcommand e e e 1474
SELECT Subcommand. i e 1476
MATRIX Subcommand 1476
Formatofthe Matrix DataFile i 1477
SpPlitFiles. .o 1477
Missing Valueso e 1478
EXample. . .. e 1478
MISSING Subcommand 1478
RESIDUALS Subcommand e e 1479
CASEWISE Subcommand 1480
SCATTERPLOT Subcommand e e 1480
PARTIALPLOT Subcommand. e 1481
OUTFILE Subcommand e e 1482
SAVE Subcommand e 1482
REfrBNCES. . ot 1483
RELIABILITY 1485
0 T T 1485
EXample . .o 1486
VARIABLES Subcommand e 1487
SCALE Subcommand e 1487
MODEL Subcommand. 1487
STATISTICS Subcommand e e e e 1488
ICC Subcommand. e 1488
SUMMARY Subcommand. e 1489
METHOD Subcommand e e e 1489
MISSING Subcommand 1489

Ixix

MATRIX Subcommand 1490

Matrix QUIPUL .. .o 1490
MatriX INpUL. . .. e 1490
Formatofthe Matrix DataFile 1491
SpltFIles. . .o 1491
Missing Valuesot 1491
Example: Matrix OQutputto External File 1491
Example: Matrix Outputto Active Dataset i, 1492
Example: Matrix Qutputto Active Dataset 1492
Example: Matrix Input from External File 1492
Example: Matrix Input from Working File L 1493
RENAME VARIABLES 1494
0 T YT 1494
EXamples . .o 1494
Mixed Case Variable Names. i e e e e 1495
REPEATING DATA 1496
OV IV B .ottt 1496
OPEratiONS . . .ottt 1497
Cases Generated.t 1498
Records Read i 1498
Reading PastEnd of Record. 1498
EXAMPIES . ..o e 1498
STARTS Subcommand e 1501
OCCURS Subcommand e e e 1502
DATA Subcommand 1503
FILE Subcommand 1504
LENGTH Subcommand 1504
CONTINUED Subcommand.o ittt 1505
ID Subcommand. e 1507
TABLE and NOTABLE Subcommands 1508

Ixx

REPORT 1509

OV BIVIBW . .ot e 1510
EXAMPIES . ..o e 1512
Defaults o 1513
OPEIONS .« oottt 1515
FORMAT Subcommand. e e e 1515
OUTFILE Subcommand e e e 1517
VARIABLES Subcommand e 1518
Column Contentso 1518
Column Headingoi it 1519
Column Heading Alignment i e e e 1519
Column Format e 1519
STRING Subcommand e 1520
BREAK Subcommand 1521
Column Contentsot e 1522
Column Headingo e 1522
Column Heading Alignment i e e e 1523
Column Format 1523
SUMMARY Subcommand. e 1525
Aggregate FUNCtionS e 1526
Composite FUNCHIONSo 1528
Summary TiHles ... 1529
Summary Print Formats 1530
Other Summary Keywords 1532
TITLE and FOOTNOTE Subcommandso e 1532
MISSING Subcommand 1533
REREAD 1535
OV BIVI B .« .\ ot 1535
EXamples . ..o 1536
FILE Subcommand 1537
COLUMN Subcommand e e e e 1539

Ixxi

RESTORE 1541

OVBIVIBW & . ettt et e e e e e e e 1541
EXamMpIE . .. e e 1541
RMV 1542
OVBIVIBW .« . ottt e e e e e e e e e e e e e e 1542
LINT FUNCLION . . . oot e e 1543
MEAN FUNCHION . ..o 1544
MEDIAN FUNCLION. . . . o e e 1544
SMEAN FUNCLION . .. o 1545
TREND FUNGLION . . . o e e e e e e 1545
ROC 1546
017 V=1 1546
EXamples . .o 1547
varlist BY varname(varvalue) 1547
MISSING Subcommand e 1548
CRITERIA Subcommand e e e e 1548
PRINT Subcommand. e e 1549
PLOT Subcommand e e 1549
SAMPLE 1550
OVBIVIBWY & e ettt et e e e e e e e e 1550
EXAMPIES . ..o e 1551
SAVE 1552
OVBIVIBW & . ettt e e e e e e e e e e e e 1552
EXamMPIES . .o 1554
OUTFILE Subcommando e e e e 1554

Ixxii

VERSION Subcommand 1555

Variable Names. oo e 1555
UNSELECTED Subcommand e e 1555
DROP and KEEP Subcommandst e 1555
RENAME Subcommand e e e 1556
MAP Subcommand. 1557
COMPRESSED and UNCOMPRESSED Subcommands. 1557
NAMES Subcommand 1557
PERMISSIONS Subcommand e 1558

SAVE DIMENSIONS 1559
OV BIVIBW .« .ot 1559
OUTFILE Subcommand e e e e 1560
METADATA Subcommand. 1561
UNSELECTED Subcommand e 1561
DROP and KEEP Subcommands i 1561
MAP Subcommand. 1562

SAVE MODEL 1563
OV BIVIBW . .ot e e 1563
OUTFILE Subcommand e e e 1564
KEEP and DROP Subcommands e e 1564
TYPE Subcommand. o e 1565

SAVE TRANSLATE 1566
OV BIVIBW . .ot e e 1567
OPBIAtIONS .« ottt 1568

Spreadsheets 1568

ABASE . . 1569

Comma-Delimited (CSV) Text Files i 1569

Tab-Delimited Text Files.o e e 1570

SAS FilES. . o e 1570

Stata Files 1571

Ixxiii

SPSS/PC+ System Fileso 1572

ODBC Database SOUICEeS. . ..ottt e e 1572
TYPE Subcommand. o 1573
VERSION Subcommand e 1574
OUTFILE Subcommand e e e e 1574
FIELDNAMES Subcommand 1574
CELLS Subcommand.o 1575
TEXTOPTIONS Subcommand e e 1575
EDITION Subcommand e e e e e 1576
PLATFORM Subcommand. e e 1576
VALFILE Subcommand 1577
ODBC Database Subcommands 1577

CONNECT Subcommandt e e 1577

ENCRYPTED Subcommand e 1577

TABLE Subcommand 1578

SAL Subcommand e 1578

APPEND Subcommand e 1579
REPLACE Subcommand e e e 1580
UNSELECTED Subcommand e 1580
DROP and KEEP Subcommands e 1580
RENAME Subcommand e e 1581
MISSING Subcommand 1581
MAP Subcommand. 1582

SCRIPT 1583
0 T YT 1583
Running Scripts That Contain SPSS Commands 1583

SEASON 1584
OV BIVI B .« .\ ot 1584
VARIABLES Subcommand e 1586
MODEL Subcommand. 1586
MA Subcommand. 1586
PERIOD Subcommand e 1586
APPLY Subcommand e 1587
REfErBNCES. . ot 1588

Ixxiv

SELECT IF 1589

OV BIVIBW . .ot e 1589
EXAMPIES . ..o e 1591
SELECTPRED 1594
OV IV B .ottt 1594
EXamMPIES . .o 1596
Variahle Listso 1597
EXCEPT Subcommand 1598
SCREENING Subcommand e 1598
CRITERIA Subcommand e e 1598
MISSING Subcommand e 1600
PRINT Subcommand. 1600
PLOT Subcommand 1601
SET 1602
OV BIVIBW . .ot e e 1603
EXaMpIE . . e 1605
WORKSPACE and MXCELLS Subcommands 1605
FORMAT Subcommand. e e e 1606
TLOOK and CTEMPLATE Subcommands i 1606
ONUMBERS, OVARS, TNUMBERS, and TVARS Subcommands 1606
TFIT Subcommand 1607
RNG, SEED, and MTINDEX Subcommands 1607
EPOCH Subcommand e 1608
ERRORS, MESSAGES, RESULTS, and PRINTBACK Subcommands. 1608
JOURNAL Subcommand. e e 1609
MEXPAND and MPRINT Subcommands i 1609
MITERATE and MNEST Subcommands. i, 1610
BLANKS Subcommand 1610
UNDEFINED Subcommand e e 1610
MXERRS Subcommand. 1610
MXWARNS Subcommand. e 1611

Ixxv

MXLOOPS Subcommand 1611

EXTENSIONS Subcommand e e e 1611
COMPRESSION Subcommand e 1611
BLOCK Subcommand e 1612
BOX Subcommand e 1612
LENGTH and WIDTH Subcommandst e 1613
HEADER Subcommand e 1613
CCA, CCB, CCC, CCD, and CCE Subcommands.cuiiii i 1613
DECIMAL Subcommand e 1614
CACHE Subcommand ot e e e e e 1615
SMALL Subcommand e 1615
OLANG Subcommand. e 1615
DEFOLANG Subcommand. e e e e 1616
SCALEMIN Subcommandt e e 1616
SORT Subcommand 1616
LOCALE Subcommand i e e 1616
SHOW 1618
OV BIVIBW . .ot e 1618
EXaMpIE . . e 1618
Subcommands e e 1619
SORT CASES 1622
OV BIVI B .« .\ ot 1622
EXamples . ..o 1623
SORT CASES with Other Procedures. i e 1623
SPCHART 1624
0T T 1625
EXample . .o 1626
TITLE, SUBTITLE, and FOOTNOTE Subcommands 1627
XRand XS Subcommands. 1627
Data Organizationt 1629

Ixxvi

Variable Specification 1630

(XBARONLY) Keyword oo e e e e 1631
land IR Subcommands. e 1631
Data Organization i e 1632
Variable Specification 1632
Pand NP Subcommands e 1633
Data Organization i e 1634
Variable Specification 1635
Cand U Subcommands. i 1636
Data Organization i e 1637
Variable Specification 1638
STATISTICS Subcommand e e e et 1638
The Process Capability Indices 1638
The Process Performance Indices. i 1639
Measure(s) for Assessing Normality, 1640
RULES Subcommand e 1640
ID Subcommand. 1641
CAPSIGMA Subcommand. e 1641
SPAN Subcommand e 1642
CONFORM and NONCONFORM Subcommands. 1642
SIGMA Subcommand e 1642
MINSAMPLE Subcommand e 1642
LSLand USL Subcommand. 1642
TARGET Subcommand e 1643
MISSING Subcommand 1643
SPECTRA 1644
0 T T 1644
EXample . .o 1645
VARIABLES Subcommand e 1646
CENTER Subcommand e e e e 1646
WINDOW Subcommand i e e 1646
PLOT Subcommand e 1648
BY Keyword. 1648
CROSS Subcommand i e 1649
SAVE Subcommand 1649
APPLY Subcommand 1650
REfErBNCES. . .o 1651

Ixxvii

SPLIT FILE

OVBIVIBW & et e e e e e
LAYERED and SEPARATE Subcommands.
Examples
STRING
OVBIVIBW .« . ettt e e e e e e e
Examples
SUBTITLE
OVBIVIBW .« ettt e e e e e e
EXamples
SUMMARIZE
OVBIVIBW .« et e e e e e
Example
TABLES Subcommand
TITLE and FOOTNOTE Subcommandso ..
CELLS Subcommand.
MISSING Subcommand i
FORMAT Subcommand.
STATISTICS Subcommand
SURVIVAL
OVBIVIBW .« . ottt e e e e e e
Example
TABLES Subcommand
INTERVALS Subcommand.
STATUS Subcommand
PLOT Subcommand e

Ixxviii

1652

1652
1653
1653

1655

1655
1656

1657

1657
1658

1659

1659
1661
1661
1661
1661
1662
1663
1663

PRINT Subcommand. e e e 1671
COMPARE Subcommand e e e 1671
CALCULATE Subcommandttt e e e e 1672
Using Aggregated Data. i e 1673
MISSING Subcommand e 1674
WRITE Subcommand 1674
Format. . ..o 1675
Record Order. 1677
SYSFILE INFO 1678
017 V=1 1678
TDISPLAY 1679
OVBIVIBW & . e ettt et e e e e e e e 1679
TYPE Subcommand. o 1680
TEMPORARY 1681
OVBIVIBW .« . ottt e e e e e e e e e e e e e e 1681
EXamMPIES . . o 1682
TITLE 1684
0 T T 1684
EXamples . ..o 1685
TMS BEGIN 1686
017 = V=1 1686
EXAMPLES . . e 1690
DESTINATION Subcommand i e e e 1691

Ixxix

TMS END 1692
OV BIVIBW . .ot e 1692
PRINT Subcommand. 1693

TMS MERGE 1694
OV IV B .ottt 1694
TRANSFORMATIONS, MODEL, and DESTINATION Subcommands 1695
PRINT Subcommand. 1695

TREE 1696
OV BIVIBW . .ot e 1697
Model Variableso 1700

Measurement Level. e 1700

FORCE Keyword.ot e e e e 1701
DEPCATEGORIES Subcommand e e e 1701
TREE Subcommand. e 1702
PRINT Subcommand. e e e 1704
GAIN Subcommand 1705
PLOT Subcommand ot e e 1706
RULES Subcommand 1707
SAVE Subcommand e 1709
METHOD Subcommand e e 1710
GROWTHLIMIT Subcommand. e e 1711
VALIDATION Subcommand. i e e 1712
CHAID Subcommand e 1713
CRT Subcommand 1715
QUEST Subcommand 1716
COSTS Subcommand e e 1716

CUSTOM COStS. . ot vttt 1717
PRIORS Subcommand i 1718
SCORES Subcommand o e 1719
PROFITS Subcommand. e e e 1720
INFLUENCE Subcommand e 1721

Ixxx

OUTFILE Subcommand e 1721

MISSING Subcommand 1721
TSAPPLY 1723
OV BIVIBW . .ot e 1724
EXAMPIES . ..o e 1725
Goodness-of-Fit Measurest e 1727
MODELSUMMARY Subcommand e 1727
MODELSTATISTICS Subcommand. i 1728
MODELDETAILS Subcommand e e e 1729
SERIESPLOT Subcommand. e e 1730
OUTPUTFILTER Subcommand. e e 1731
SAVE Subcommand e 1732
AUXILIARY Subcommand 1733
MISSING Subcommand 1734
MODEL Subcommand. 1735
TSET 1738
OV VI B .ottt e 1738
DEFAULT Subcommand.o e e 1739
ID Subcommand. 1739
MISSING Subcommand 1739
MXNEWVARS Subcommand. 1739
MXPREDICT Subcommand e 1739
NEWVAR Subcommand e 1740
PERIOD Subcommand 1740
PRINT Subcommand. e e 1740
TSHOW 1741
OV BIVIBW .« .ot e 1741
EXample . . 1741

Ixxxi

TSMODEL 1742

OV BIVIBW . .ot e 1744
EXAMPIES . ..o e 1746
Goodness-of-Fit Measurest e 1748
MODELSUMMARY Subcommand e 1748
MODELSTATISTICS Subcommand. i 1749
MODELDETAILS Subcommand e e 1750
SERIESPLOT Subcommand. e 1751
OUTPUTFILTER Subcommand. e 1752
SAVE Subcommand 1753
AUXILIARY Subcommand 1754
MISSING Subcommand 1755
MODEL Subcommand. 1755
EXPERTMODELER Subcommand. e 1758
EXSMOOTH Subcommand e e e e 1759
ARIMA Subcommand e 1760
TRANSFERFUNCTION Subcommand. e 1762
AUTOOUTLIER Subcommand e e 1765
OUTLIER Subcommand. o e e e e 1766
TSPLOT 1768
OV VI B .ottt 1768
Basic Specification. e 1769
EXample . ..o e 1770
VARIABLES Subcommand i 1770
DIFF Subcommand 1771
SDIFF Subcommand 171
PERIOD Subcommand e 1771
LN and NOLOG Subcommands e 1772
ID Subcommand. 1772
FORMAT Subcommand. e e 1772
MARK Subcommand. 1775
SPLIT Subcommand o e 1776
APPLY Subcommand e 1777

Ixxxii

T-TEST

OV BIVIBW . .ot e
EXAMPIES . ..o e
VARIABLES Subcommand e
TESTVAL Subcommand e
GROUPS Subcommand.
PAIRS Subcommand. e
CRITERIA Subcommand e e e e
MISSING Subcommand e

TWOSTEP CLUSTER

OV IV B .ottt
Variable List o e
CATEGORICAL Subcommand e
CONTINUQUS Subcommand. e
CRITERIA Subcommand e e e e
DISTANCE Subcommand e e e
HANDLENOISE Subcommand. e e
INFILE Subcommand
MEMALLOCATE Subcommand e
MISSING Subcommand
NOSTANDARDIZE Subcommand. e
NUMCLUSTERS Subcommand e
OUTFILE Subcommand e e e
PRINT Subcommand.
SAVE Subcommand

UNIANOVA

OV BIVIBW . .ot e
EXamMpIE . . e
UNIANOVA Variable List. e
RANDOM Subcommand e
REGWGT Subcommand e e e

Ixxxiii

1778

1778
1779
1780
1780
1780
1781
1781
1782

1783

1783
1785
1785
1785
1785
1786
1786
17817
1787
1787
1787
1788
1788
1789
1789

METHOD Subcommand e 1794

INTERCEPT Subcommand. i e e 1795
MISSING Subcommand 1795
CRITERIA Subcommand e e e e e 1796
PRINT Subcommand. 1796
PLOT Subcommand it e e 1798
TEST Subcommand. 1798
LMATRIX Subcommand 1799
KMATRIX Subcommand 1800
CONTRAST Subcommand. e e 1801
POSTHOC Subcommand. e 1803
EMMEANS Subcommand. e 1806
SAVE Subcommand e 1807
OUTFILE Subcommand e e e e 1807
DESIGN Subcommand e 1808
UPDATE 1810
0 T YT 1810
EXamples . .o 1812
FILE Subcommand 1813
TextData Files.o e 1813

BY Subcommand 1813
RENAME Subcommand e e 1814
DROP and KEEP Subcommands i 1814
IN Subcommand. e 1815
MAP Subcommand. 1815
USE 1817
0 T T 1817
Syntax RUlES.o 1818
DATE Specificationsot e 1818
Case Specifications. i 1818
Keywords FIRST and LAST. o e 1818
EXaMPIES . .o 1818

Ixxxiv

VALIDATEDATA

OV BIVIBW . .ot e
EXAMPIES . ..o e
Variable Lists
VARCHECKS Subcommand.t i e e
IDCHECKS Subcommand e e
CASECHECKS Subcommand. e e
RULESUMMARIES Subcommand i i e
CASEREPORT Subcommand e e
SAVE Subcommand
Single-Variable Validation Rules i
Cross-Variable Validation Rules i i

VALUE LABELS

OVBIVIBW & . . e e ettt e e e e e e e e
EXamples . ..o e

VARCOMP

OV BIVIBW . .ot e e
Variable Listo
RANDOM Subcommand
METHOD Subcommand e e
INTERCEPT Subcommand. e e
MISSING Subcommand
REGWGT Subcommand i e e e
CRITERIA Subcommand e e et
PRINT Subcommand.
OUTFILE Subcommand e e
DESIGN Subcommand

Ixxxv

1820

1820
1822
1824
1825
1826
1826
1826
1827
1827
1828
1831

1832

1832
1833

VARIABLE ALIGNMENT

OVBIVIBW & . ettt et e e e e e e e

VARIABLE ATTRIBUTE

OVBIVIBW & . . e e ettt e e e e e e e e

VARIABLE LABELS

VIV B ottt
EXamples . .o

VARIABLE LEVEL

017 V=1

VARIABLE WIDTH

OVBIVIBW .« . ottt e e e e e e e e e e e e e e

VARSTOCASES

OV BIVIBW . .ot e
EXaMpIE . .. e e
MAKE Subcommand.
ID Subcommand. i
INDEX Subcommand

Simple Numeric IndeXo
Variable Name Index. e
Multiple Numeric Indices. o
NULL Subcommand
COUNT Subcommand. e e e e

DROP and KEEP Subcommands

IXxxvi

VECTOR 1857

OVBIVIBW & . ettt et e e e e e e e 1857
EXAMPIES . ..o e 1858
VECTOR: Short Form oo e e 1859
VECTOR outside a Loop Structure.ottt e et et 1861
VERIFY 1863
OVBIVIBW & . ettt e e e e e e e e e e e e 1863
VARIABLES Subcommand 1864
EXamples . ..o 1864
WEIGHT 1865
OVBIVIBW & . e ettt et e e e e e e e 1865
EXAMPIES . ..o e e 1866
WLS 1867
OVBIVIBW & . e ettt et e e e e e e e 1867
EXaMpIE . . e 1869
VARIABLES Subcommand 1869
SOURCE Subcommand e 1869
DELTA Subcommand. 1869
WEIGHT Subcommand e e 1870
CONSTANT and NOCONSTANT Subcommands.ttt 1871
SAVE Subcommand e 1871
PRINT Subcommand. e 1871
APPLY Subcommand 1871
WRITE 1873
OVBIVIBW .« . ottt e e e e e e e e e e e e e e 1873
EXamMPIES . .o 1874

IXxxvii

FOrmats . . o 1875

SIS o o ot 1875
RECORDS Subcommand i e e e 1876
OUTFILE Subcommand e e 1876
TABLE Subcommand 1877
WRITE FORMATS 1878
0 T YT 1878
EXamples . ..o 1879
XGRAPH 1881
OV BIVIBW .« .ot 1882
CHART EXPression . ..ottt et e e et e 1883
FUNCHIONS. . . o 1883
Data Element Types. . ..ot e 1884
Measurement Level. 1885
Variable Placeholder. 1885
Case NUMDbDEIS. . ..o e e e 1885
Blending, Clustering, and Stacking. 1886
Labels . ..o 1887

BIN Subcommand e 1887
START Keyword.o 1887
SIZEKeyword 1888
DISPLAY Subcommand. 1888
DOT Keywordo e 1888
DISTRIBUTION Subcommand. e e e 1888
TYPE Keyword. o e 1888
COORDINATE Subcommand e 1889
SPLITKeyword e 1889
ERRORBAR Subcommand. e 1889
ClKeYWOrd . .o 1889
STDDEV Keyword e e 1889

SE Keyword. 1889
MISSING Subcommand 1890
USE Keyword.o 1890
REPORT Keyword e e e e e e 1890

Ixxxviii

PANEL Subcommand 1890

COLVAR and ROWVAR Keywords. oot e 1890

COLOP and ROWOP Keywords. oot e e e 1891

TEMPLATE Subcommand e 1892

FILE Keyword. . ..o e 1892

TITLES Subcommand e 1892

TITLE Keyword e e e e 1893

SUBTITLE Keywordot e et e et et e 1893

FOOTNOTE Keywordoi e 1893

3-D Bar EXampleso 1893

Population Pyramid Examples. 1894

Dot Plot Examples.o 1896

XSAVE 1897

0 T YT 1897

EXamples . .o 1899

OUTFILE Subcommand e e e 1899

DROP and KEEP Subcommands i 1899

RENAME Subcommand e 1900

MAP Subcommand. 1901

COMPRESSED and UNCOMPRESSED Subcommands. 1901

PERMISSIONS Subcommand e 1902
Appendices

A IMPORT/EXPORT Character Sets 1903

B Commands and Program States 1911

Program States. 1911

Determining Command Ordert 1912

Unrestricted Utility Commands. 1915

File Definition Commands i 1916

Input Program Commands it 1916

Transformation Commands i 1916

Ixxxix

Restricted Transformationsttt e 1917

ProceduUreso 1918

C Defining Complex Files 1919
RectangularFileo 1919

Nested Files 1920

Nested Files with Missing Records 1921

Grouped Data 1922

Using DATA LIST . oo 1922

Using FILETYPE GROUPEDt e e e 1923

Mixed Files. . ..o 1925
Reading Each RecordinaMixed File. i, 1925

Reading a Subset of RecordsinaMixedFile 1927

Repeating Data. i e 1927

Fixed Number of Repeating Groupst e 1928

Varying Number of Repeating Groups i 1929

D Using the Macro Facility 1931
Example 1: Automating a File-Matching Task 1931
Example 2: Testing Correlation Coefficients. 1937
Example 3: Generating Random Data i 1941

E Canonical Correlation and Ridge Regression Macros 1945
Canonical Correlation Macrottt e e e 1945

Ridge Regression Macrottt e e e 1945

F File Specifications for Predictive Enterprise Repository

Objects 1946
VOIS ONS .« o ettt e 1947
Description (D)o 1948
Keywords (#K) o 1948

XC

Using File Handles for Repository Locations
Setting the Working Directory to a Repository Location

Bibliography

Index

Xci

Introduction: A Guide to SPSS
Command Syntax

The SPSS Command Syntax Reference is arranged alphabetically by command name to provide
quick access to detailed information about each command in the SPSS command language. This
introduction groups commands into broad functional areas. Some commands are listed more than
once because they perform multiple functions, and some older commands that have deprecated in
favor of newer and better alternatives (but are still supported) are not included here.

Base System

The SPSS Base system contains the core functionality plus a wide range of statistical and charting
procedures. There are also numerous add-on modules that contain specialized functionality.

Getting Data into SPSS

SPSS can read a variety of data formats, including data files saved in SPSS format, SAS datasets,
database tables from many database sources, Excel and other spreadsheets, and text data files with
both simple and complex structures.

Command Description Page Number

SPSS Data Files

Get Reads SPSS-format data files. on p. 696

Import Reads SPSS portable data files created with the on p. 847
Export command.

Add Files Combines multiple data files by adding cases. onp. 102

Match Files Combines multiple data files by adding variables. |on p. 984

Update Replaces values in a master file with updated onp. 1810
values.

Data Files Created by Other Applications

Get Translate Reads spreadsheet and dBASE files. onp. 716

Get Data Reads Excel files, text data files, and database on p. 703
tables.

Database Tables

Get Data Reads Excel files, text data files, and database on p. 703
tables.

Get Capture Reads database tables. on p. 700

SAS and Stata Data Files

Get SAS Reads SAS dataset and SAS transport files. onp. 711

Get Stata Reads Stata data files. onp. 715

Text Data Files

2

Introduction: A Guide to SPSS Command Syntax

Command Description Page Number
Get Data Reads Excel files, text data files, and database on p. 703
tables.
Data List Reads text data files. on p. 448
Begin Data-End Data | Used with Data List to read inline text data. onp. 175
Complex (nested, mixed, grouped, etc.) Text Data Files
File Type Defines mixed, nested, and grouped data onp. 613
structures.
Record Type Used with File Type to read complex text data onp. 1451
files.
Input Program Generates case data and/or reads complex data on p. 854
files.
End Case Used with Input Program to define cases. onp. 567
End File Used with Input Program to indicate end of file. onp. 573
Repeating Data Used with Input Program to read input cases on p. 1496
whose records contain repeating groups of data.
Reread Used with Input Program to reread a record. onp. 1535
Keyed Data List Reads data from nonsequential files: on p. 861
B Direct-access files, which provide direct
access by a record number.
m Keyed files, which provide access by a record
key.
Point Used with Keyed Data to establish the location at |on p. 1319
which sequential access begins (or resumes) in a
keyed file.
Working with Multiple Data Sources
Dataset Name Provides the ability to have multiple data sources |on p. 478
open at the same time.
Dataset Activate Makes the named dataset the active dataset. on p. 469

Saving and Exporting Data

You can save data in numerous formats, including SPSS data file format, Excel spreadsheet,

database table, delimi

ted text, and fixed-format text.

Command Description Page Number

Saving Data in SPSS Format

Save Saves the active dataset in SPSS format. onp. 1552

Xsave Saves data in SPSS format without requiring a on p. 1897
separate data pass.

Export Saves data in SPSS portable format. on p. 586

Save Dimensions Saves a data file in SPSS format and a metadata |on p. 1559

file in Dimensions MDD format for use in
Dimensions applications.

Saving Data as Text

Write

Saves data as fixed-format text.

onp. 1873

3

Introduction: A Guide to SPSS Command Syntax

Command Description Page Number

Save Translate Saves data as tab-delimited text and onp. 1566
comma-delimted (CSV) text.

Saving Data in Spreadsheet Format

Save Translate Saves data in Excel and other spreadsheet formats |on p. 1566
and dBASE format.

Writing Data Back to a Database Table

Save Translate Replaces or appends to existing database tables or |on p. 1566
creates new database tables.

Data Definition

An SPSS data file can contain more than simply data values. The SPSS dictionary can contain a

variety of metadata attributes, including measurement level, display format, descriptive variable

and value labels, and special codes for missing values.

information.

Command Description Page Number

Apply Dictionary Applies variable and file-based dictionary onp. 160
information from an external SPSS-format data
file.

Datafile Attribute Creates user-defined attributes that can be saved |on p. 466
with the data file.

Variable Attribute Creates user-defined variable attributes that can be |on p. 1843
saved with variables in the data file.

Variable Labels Assigns descriptive labels to variables. on p. 1846

Value Labels Assigns descriptive labels to data values. onp. 1832

Add Value Labels Assigns descriptive labels to data values. onp. 109

Variable Level Specifies the level of measurement (nominal, on p. 1848
ordinal, or scale).

Missing Values Specifies values to be treated as missing. onp. 1062

Rename Changes variable names. on p. 1494

Formats Changes variable print and write formats. onp. 638

Print Formats Changes variable print formats. onp. 1374

Write Formats Changes variable write formats. onp. 1878

Variable Alignment Specifies the alignment of data values in the Data |on p. 1842
Editor.

Variable Width Specifies the column width for display of variables | on p. 1849
in the Data Editor.

Mrsets Defines and saves multiple response set on p. 1094

4

Introduction: A Guide to SPSS Command Syntax

Data Transformations

You can perform data transformations ranging from simple tasks, such as collapsing categories
for analysis, to more advanced tasks, such as creating new variables based on complex equations
and conditional statements.

Command Description Page Number

Autorecode Recodes the values of string and numeric variables |on p. 167
to consecutive integers.

Compute Creates new numeric variables or modifies the on p. 258
values of existing string or numeric variables.

Count Counts occurrences of the same value across a list |on p. 290
of variables.

Create Produces new series as a function of existing on p. 305
series.

Date Generates date identification variables. on p. 481

Leave Suppresses reinitialization and retains the current |on p. 876

value of the specified variable or variables when
the program reads the next case.

Numeric Declares new numeric variables that can be on p. 1203
referred to before they are assigned values.

Rank Produces new variables containing ranks, normal |on p. 1431
scores, and Savage and related scores for numeric
variables.

Recode Changes, rearranges, or consolidates the values on p. 1445
of an existing variable.

RMV Replaces missing values with estimates computed |on p. 1542
by one of several methods.

String Declares new string variables. on p. 1655

Temporary Signals the beginning of temporary onp. 1681

transformations that are in effect only for
the next procedure.

TMS Begin Indicates the beginning of a block of onp. 1686
transformations to be exported to a file in PMML
format (with SPSS extensions).

TMS End Marks the end of a block of transformations to be |on p. 1692
exported as PMML.
TMS Merge Merges a PMML file containing exported on p. 1694

transformations with a PMML model file.

File Information

You can add descriptive information to a data file and display file and data attributes for the active
dataset or any selected SPSS-format data file.

Command Description Page Number

Add Documents Saves a block of text of any length in an SPSS-format on p. 100
data file.

Display Displays information from the dictionary of the active on p. 544
dataset.

5

Introduction: A Guide to SPSS Command Syntax

Command Description Page Number
Document Saves a block of text of any length in an SPSS-format on p. 563

data file.
Drop Documents Deletes all text added with Document or Add Documents. |on p. 565
Sysfile Info Displays complete dictionary information for all variables |on p. 1678

in a specified SPSS-format data file.

File Transformations

Data files are not always organized in the ideal form for your specific needs. You may want to
combine data files, sort the data in a different order, select a subset of cases, or change the unit of
analysis by grouping cases together. A wide range of file transformation capabilities is available.

Command Description Page Number
Delete Variables Deletes variables from the data file. on p. 509
Sort Cases Reorders the sequence of cases based on the values of one |on p. 1622
or more variables.
Weight Case replication weights based on the value of a specified |on p. 1865
variable.

Select Subsets of Cases

Filter Excludes cases from analysis without deleting them from |on p. 627
the file.

N of Cases Deletes all but the first n cases in the data file. onp. 1136

Sample Selects a random sample of cases from the data file, on p. 1550
deleting unselected cases.

Select If Selects cases based on logical conditions, deleting onp. 1589
unselected cases.

Split File Splits the data into separate analysis groups based on onp. 1652
values of one or more split variables.

Use Designates a range of observations for time series onp. 1817
procedures.

Change File Structure

Aggregate Aggregates groups of cases or creates new variables onp. 112
containing aggregated values.

Casestovars Restructures complex data that has multiple rows for a onp. 193
case.

Varstocases Restructures complex data structures in which information | on p. 1850
about a variable is stored in more than one column.

Flip Transposes rows (cases) and columns (variables). on p. 634

Merge Data Files

Add Files Combines multiple SPSS data files by adding cases. onp. 102

Match Files Combines multiple SPSS data file by adding variables. on p. 984

Update Replaces values in a master file with updated values. onp. 1810

6

Introduction: A Guide to SPSS Command Syntax

Programming Structures

As with other programming languages, SPSS contains standard programming structures that can
be used to do many things. These include the ability to perform actions only if some condition is
true (if/then/else processing), repeat actions, create an array of elements, and use loop structures.

Command Description Page Number

Break Used with Loop and Do If-Else If to control looping that |on p. 182
cannot be fully controlled with conditional clauses.

Do If-Else If Conditionally executes one or more transformations based | on p. 547
on logical expressions.

Do Repeat Repeats the same transformations on a specified set of on p. 557
variables.

If Conditionally executes a single transformation based on | on p. 818
logical conditions.

Loop Performs repeated transformations specified by the on p. 909
commands within the loop until they reach a specified
cutoff.

Vector Associates a vector name with a set of variables or defines | on p. 1857
a vector of new variables.

Programming Utilities

Command Description Page Number

Define Defines a program macro. on p. 490

Echo Displays a specified text string as text output. on p. 566

Execute Forces the data to be read and executes the transformations | on p. 585
that precede it in the command sequence.

Host Executes external commands at the operating system level. | on p. 814

Include Includes commands from the specified file. on p. 851

Insert Includes commands from the specified file. onp. 858

Script Runs the specified script file. on p. 1583

General Utilities

Command Description Page Number

Cache Creates a copy of the data in temporary disk space for onp. 183
faster processing.

Clear Transformations Discards all data transformation commands that have on p. 238
accumulated since the last procedure.

Erase Deletes the specified file. onp. 575

File Handle Assigns a unique file handle to the specified file. on p. 609

New File Creates a blank, new active dataset. onp. 1148

Permissions Changes the read/write permissions for the specified file. |on p. 1304

Preserve Stores current Set command specifications that can later |on p. 1355
be restored by the Restore command.

Print Prints the values of the specified variables as text output. | on p. 1365

7

Introduction: A Guide to SPSS Command Syntax

Command Description Page Number
Print Eject Displays specified information at the top of a new page onp. 1371
of the output.
Print Space Displays blank lines in the output. onp. 1377
Restore Restores Set specifications that were stored by Preserve. | on p. 1541
Set Customizes program default settings. on p. 1602
Show Displays current settings, many of which are set by the onp. 1618
Set command.
Subtitle Inserts a subtitle on each page of output. on p. 1657
Title Inserts a title on each page of output. on p. 1684
Matrix Operations
Command Description Page Number
Matrix Using matrix programs, you can write your own statistical |on p. 993
routines in the compact language of matrix algebra.
Matrix Data Reads raw matrix materials and converts them to a matrix |on p. 1036
data file that can be read by procedures that handle matrix
materials.
Mconvert Converts covariance matrix materials to correlation matrix | on p. 1054

materials or vice versa.

Output Management System

The Output Management System (OMS) provides the ability to automatically write selected
categories of output to different output files in different formats, including SPSS data file format,
HTML, XML, and text.

Command Description Page Number
OMS Controls the routing and format of output. Output can be |onp. 1211
routed to external files in XML, HTML, text, and SAV
(SPSS data file) formats.
OMSEnd Ends active OMS commands. on p. 1238
OMSInfo Displays a table of all active OMS commands. on p. 1240
OMSLog Creates a log of OMS activity. on p. 1241
Output Documents
These commands control Viewer and Draft Viewer windows and files.
Command Description Page Number
Output Activate Controls the routing of output to Viewer and Draft | on p. 1264
Viewer output documents.
Output Close Closes the specified Viewer or Draft Viewer onp. 1266
document.
Output Display Displays a table of all open Viewer and Draft on p. 1268
Viewer documents.

8

Introduction: A Guide to SPSS Command Syntax

Command Description Page Number
Output Name Assigns a name to the active Viewer or Draft onp. 1269
Viewer document. The name is used to refer to the
output document in subsequent Output commands.
Output New Creates a new Viewer or Draft Viewer output onp. 1271

document, which becomes the active output
document.

Output Open

Opens a Viewer or Draft Viewer document, which |on p. 1269

becomes the active output document. You can
use this command to append output to an existing
output document.

Output Save Saves the contents of an open output document onp. 1277
to a file.

Charts

Command Description Page Number

Caseplot Casewise plots of sequence and time series variables. onp. 184

Graph Bar charts, pie charts, line charts, histograms, scatterplots, |on p. 783
etc.

GGraph Bar charts, pie charts, line charts, scatterplots, custom on p. 724
charts.

Igraph Bar charts, pie charts, line charts, histograms, scatterplots, |on p. 824
etc.

Pplot Probability plots of sequence and time series variables. onp. 1323

ROC Receiver operating characteristic (ROC) curve and an on p. 1546
estimate of the area under the curve.

Spchart Control charts, including X-Bar, 1, s, individuals, moving |on p. 1624
range, and u.

Xgraph Creates 3-D bar charts, population pyramids, and dot plots. [on p. 1881

Reports

In addition to the commands listed here, the Tables option provide many advanced reporting
capabilities. For more information, see Add-On Modules on p. 12.

Command Description Page Number

OLAP Cubes Summary statistics for scale variables within categories on p. 1205
defined by one or more categorical grouping variables.

Summarize Individual case listing and group summary statistics. on p. 1659

List Individual case listing. on p. 878

Report Individual case listing and group summary statistics. on p. 1509

9

Descriptive Statistics

Introduction: A Guide to SPSS Command Syntax

Command Description Page Number
Crosstabs Crosstabulations (contingency tables) and measures of onp. 314
association.
Descriptives Univariate statistics, including the mean, standard onp. 510
deviation, and range.
Examine Descriptive statistics, stem-and-leaf plots, histograms, onp. 576
boxplots, normal plots, robust estimates of location, and
tests of normality.
Frequencies Tables of counts and percentages and univariate statistics, |on p. 643
including the mean, median, and mode.
Ratio Statistics Descriptive statistics for the ratio between two variables. |on p. 1437
Compare Means
Command Description Page Number
Means Group means and related univariate statistics for onp. 1057
dependent variables within categories of one or more
independent variables.
Oneway One-way analysis of variance. on p. 1243
TTest One sample, independent samples, and paired samples onp. 1778
t tests.
General Linear Model

In addition to the command(s) listed here, the Advanced Models option provides more advanced
general linear model features. For more information, see Add-On Modules on p. 12.

Command Description Page Number

Unianova Regression analysis and analysis of variance for one on p. 1790
dependent variable by one or more factors and/or
variables.

Correlate

Command Description Page Number

Correlations Pearson correlations with significance levels, univariate on p. 274
statistics, covariances, and cross-product deviations.

Nonpar Corr Rank-order correlation coefficients: Spearman’s rtho and |on p. 1178
Kendall’s tau-b, with significance levels.

Partial Corr Partial correlation coefficients between two variables, on p. 1294
adjusting for the effects of one or more additional
variables.

Proximities Measures of similarity, dissimilarity, or distance between |on p. 1390

pairs of cases or pairs of variables.

10

Introduction: A Guide to SPSS Command Syntax

Nonparametric Tests

Command Description Page Number

Nonpar Corr Rank-order correlation coefficients: Spearman’s rho and |on p. 1178
Kendall’s tau-b, with significance levels.

Npar Tests Collection of one-sample, independent samples, and onp. 1184
related samples nonparametric tests.

Regression

In addition to the commands listed here, the Regression Models option provides more advanced
regression analysis features. For more information, see Add-On Modules on p. 12.

Command Description Page Number
Regression Multiple regression equations and associated on p. 1462
statistics and plots.
Plum Analyzes the relationship between a polytomous |on p. 1311
ordinal dependent variable and a set of predictors.
Curvefit Fits selected curves to a line plot. on p. 440
Classification

In addition to the commands listed here, the Classification Trees option provides additional
classification methods. For more information, see Add-On Modules on p. 12.

Command Description Page Number

Cluster Hierarchical clusters of items based on distance measures |on p. 239
of dissimilarity or similarity. The items being clustered
are usually cases, although variables can also be clustered.

Quick Cluster When the desired number of clusters is known, this on p. 1424
procedure groups cases efficiently into clusters.

Twostep Cluster Groups observations into clusters based on a nearness onp. 1783
criterion. The procedure uses a hierarchical agglomerative
clustering procedure in which individual cases are
successively combined to form clusters whose centers are
far apart.

Discriminant Classifies cases into one of several mutually exclusive on p. 525
groups based on their values for a set of predictor
variables.

Data Reduction

In addition to the command(s) listed here, the Categories option provides data reduction methods.
For more information, see Add-On Modules on p. 12.

Command Description Page Number
Factor Identifies underlying variables, or factors, that explain the |on p. 592
pattern of correlations within a set of observed variables.

1

Scale

Introduction: A Guide to SPSS Command Syntax

In addition to the commands listed here, the Categories option provides additional scaling
methods. For more information, see Add-On Modules on p. 12.

Scale Description Page Number

ALSCAL Multidimensional scaling (MDS) and multidimensional onp. 127
unfolding (MDU) using an alternating least-squares
algorithm.

Reliability Estimates reliability statistics for the components of on p. 1485
multiple-item additive scales.

Multiple Response

In addition to the command(s) listed here, the Tables option also provides methods for defining
and reporting multiple-response data. For more information, see Add-On Modules on p. 12.

Command

Description

Page Number

Mult Response

Frequency tables and crosstabulations for
multiple-response data.

on p. 1098

Time Series

The Base system provides some basic time series functionality, including a number of time series
chart types. Extensive time series analysis features are provided in the Trends option. For more
information, see Add-On Modules on p. 12.

Command Description Page Number

ACF Displays and plots the sample autocorrelation function onp. 93
of one or more time series.

CCF Displays and plots the cross-correlation functions of two | on p. 229
or more time series.

PACF Displays and plots the sample partial autocorrelation on p. 1288
function of one or more time series.

Tsplot Plot of one or more time series or sequence variables. on p. 1768

Fit Displays a variety of descriptive statistics computed from |on p. 631
the residual series for evaluating the goodness of fit of
models.

Predict Specifies the observations that mark the beginning and on p. 1333
end of the forecast period.

Tset Sets global parameters to be used by procedures that onp. 1738
analyze time series and sequence variables.

Tshow Displays a list of all of the current specifications on the onp. 1741
Tset, Use, Predict, and Date commands.

Verify Produces a report on the status of the most current Date, |on p. 1863

Use, and Predict specifications.

12

Introduction: A Guide to SPSS Command Syntax

Scoring

The following commands work only with SPSS Server and the SPSS batch facility (SPSSB) that
accompanies SPSS Server.

Command Description Page Number

Model Handle Reads an external XML file containing specifications for a | on p. 1087
predictive model.

Model Close Discards cached models and their associated model handle | on p. 1086
names.

Model List Lists the model handles currently in effect. on p. 1091

Add-0n Modules

Add-on modules are not included with the Base system. The commands available to you will
depend on your software license.

Advanced Models

Command Description Page Number

GLM General Linear Model. A general procedure for on p. 741
analysis of variance and covariance, as well as
regression.

Genlin Generalized Linear Model. Genlin allows you to on p. 652
fit a broad spectrum of “generalized” models in
which the distribution of the error term need not be
normal and the relationship between the dependent
variable and predictors need only be linear through
a specified transformation.

Varcomp Estimates variance components for mixed models. |on p. 1835

Mixed The mixed linear model expands the general on p. 1065
linear model used in the GLM procedure in that
the data are permitted to exhibit correlation and
non-constant variability.

Genlog A general procedure for model fitting, hypothesis | on p. 685
testing, and parameter estimation for any model that
has categorical variables as its major components.

Hiloglinear Fits hierarchical loglinear models to onp. 797
multidimensional contingency tables using
an iterative proportional-fitting algorithm.

Survival Actuarial life tables, plots, and related statistics. on p. 1665

Coxreg Cox proportional hazards regression for analysis on p. 292
of survival times.

KM Kaplan-Meier (product-limit) technique to describe |on p. 867
and analyze the length of time to the occurrence
of an event.

13

Regression Models

Introduction: A Guide to SPSS Command Syntax

Command Description Page Number
Logistic Regression Regresses a dichotomous dependent variable on a set of | on p. 882
independent variables.
Nomreg Fits a multinomial logit model to a polytomous nominal |on p. 1165
dependent variable.
NLR, CNLR Nonlinear regression is used to estimate parameter values |on p. 1149
and regression statistics for models that are not linear in
their parameters.
WLS Weighted Least Squares. Estimates regression models on p. 1867
with different weights for different cases.
2SLS Two-stage least-squares regression. on p. 88
Tables
Command Description Page Number
Ctables Produces tables in one, two, or three dimensions onp. 412
and provides a great deal of flexibility for
organizing and displaying the contents.
Classification Trees
Command Description Page Number
Tree Tree-based classification models. onp. 1696
Categories
Command Description Page Number
Catreg Categorical regression with optimal scaling using |on p. 218
alternating least squares.
CatPCA Principal components analysis. on p. 201
Overals Nonlinear canonical correlation analysis on two or | on p. 1279
more sets of variables.
Correspondence Displays the relationships between rows and on p. 279
columns of a two-way table graphically by a
scatterplot matrix.
Multiple Quantifies nominal (categorical) data by assigning |on p. 1108
Correspondence numerical values to the cases (objects) and
categories, such that objects within the same
category are close together and objects in different
categories are far apart.
Proxscal Multidimensional scaling of proximity data to find | on p. 1407

a least-squares representation of the objects in a
low-dimensional space.

14

Introduction: A Guide to SPSS Command Syntax

Complex Samples

Command Description Page Number
CSPlan Creates a complex sample design or analysis on p. 378
specification.
CSSelect Selects complex, probability-based samples from |on p. 397
a population.
CSDescriptives Estimates means, sums, and ratios, and computes |on p. 326
their standard errors, design effects, confidence
intervals, and hypothesis tests.
CSTabulate Frequency tables and crosstabulations, and on p. 406
associated standard errors, design effects,
confidence intervals, and hypothesis tests.
CSGLM Linear regression analysis, and analysis of onp. 332
variance and covariance.
CSLogistic Logistic regression analysis on a binary or on p. 346
multinomial dependent variable using the
generalized link function.
CSOrdinal Fits a cumulative odds model to an ordinal on p. 361
dependent variable for data that have been
collected according to a complex sampling design.
Trends
Command Description Page Number
Season Estimates multiplicative or additive seasonal onp. 1584
factors.
Spectra Periodogram and spectral density function on p. 1644
estimates for one or more series.
Tsapply Loads existing time series models from an external [on p. 1723
file and applies them to data.
Tsmodel Estimates exponential smoothing, univariate onp. 1742
Autoregressive Integrated Moving Average
(ARIMA), and multivariate ARIMA (or transfer
function models) models for time series, and
produces forecasts.
Conjoint
Command Description Page Number
Conjoint Analyzes score or rank data from full-concept conjoint on p. 264
studies.
Orthoplan Orthogonal main-effects plan for a full-concept conjoint | on p. 1259
analysis.
Plancards Full-concept profiles, or cards, from a plan file for conjoint | on p. 1305
analysis.

15

Missing Values Analysis

Introduction: A Guide to SPSS Command Syntax

Command Description Page Number

MVA Missing Value Analysis. Describes missing value patterns |on p. 1122
and estimates (imputes) missing values.

Maps

Command Description Page Number

Map Maps displaying from one to six themes (bars, pies, dot onp. 972

densities, symbols, and shadings for ranges or individual
values) that illustrate the distribution of data across the
geographic regions displayed on the map.

Data Preparation

Command Description Page Number

Detectanomaly Searches for unusual cases based on deviations onp. 516
from the norms of their cluster groups.

Validatedata Identifies suspicious and invalid cases, variables, on p. 1820
and data values in the active dataset.

Optimal Binning Discretizes scale “binning input” variables to onp. 1253
produce categories that are “optimal” with respect
to the relationship of each binning input variable
with a specified categorical guide variable.

SPSS Adaptor for Predictive Enterprise Services

Command Description Page Number

PER Connect Establishes a connection to a Predictive Enterprise |on p. 1302
Repository and logs in the user.

Universals

This part of the SPSS Command Syntax Reference discusses general topics pertinent to using
command syntax. The topics are divided into five sections:

B Commands explains command syntax, including command specification, command order,

and running commands in different modes. In this section, you will learn how to read syntax
charts, which summarize command syntax in diagrams and provide an easy reference.
Discussions of individual commands are found in an alphabetical reference in the next part
of this manual.

m Files discusses different types of files used by the program. Terms frequently mentioned in
this manual are defined. This section provides an overview of how files are handled.

B Variables and Variable Types and Formats contain important information about general rules
and conventions regarding variables and variable definition.

B Transformations describes expressions that can be used in data transformation. Functions
and operators are defined and illustrated. In this section, you will find a complete list of
available functions and how to use them.

Commands

Commands are the instructions that you give the program to initiate an action. For the program
to interpret your commands correctly, you must follow certain rules.

Syntax Diagrams

Each command described in this manual includes a syntax diagram that shows all of the
subcommands, keywords, and specifications allowed for that command. By recognizing symbols
and different type fonts, you can use the syntax diagram as a quick reference for any command.

Lines of text in italics indicate limitation or operation mode of the command.

Elements shown in upper case are keywords defined by SPSS to identify commands,
subcommands, functions, operators, and other specifications. In the sample syntax diagram
below, T-TEST is the command and GROUPS is a subcommand.

Elements in lower case describe specifications that you supply. For example, varlist
indicates that you need to supply a list of variables.

Elements in bold are defaults. SPSS supports two types of defaults. When the default
is followed by **, as ANATLYSIS** is in the sample syntax diagram below, the default
(ANALYSTIS) is in effect if the subcommand (MISSING) is not specified. If a default is not
followed by **, it is in effect when the subcommand (or keyword) is specified by itself.

16

17

Universals

Figure 2-1
Syntax diagram

P ubgrouping (in italics
Indep!endenrsamples.' grouping {]

T T P [eywords (in all upper case)
T-TEST GROUPS=warname [{1,2** Ty AVARIARIES=warlist
h

g:ﬁ:value} User specification (in lower case)
p-Detault (in bold)

[~MISSIHG= {mSl]iI.YSIS**} [INCLUDE]]
{LISTVISE 1}
L

P Alternatives (in aligned { 1)
[~ FORMAT={LABELS**}]

| {HOLABETS}

Paired sarmples. P-Cptional specification (in [)

T-TEST PaIRS=varlist [WITH varlist [(PAIRED)]] [~warlist ...]
‘ L pRepeatable elements (with)

[~MISSING={ANALYSIS**} [INCLUDE]]
{LISTUISE 1

p-Parenthesas (cannot be omitted)
[“FORMAT={LABELS**}]
{HOLABELS}

**Default if the subcommand i1s omitted . —— W ot

m Parentheses, apostrophes, and quotation marks are required where indicated.

m Unless otherwise noted, elements enclosed in square brackets ([1) are optional. For some
commands, square brackets are part of the required syntax. The command description
explains which specifications are required and which are optional.

m Braces ({ }) indicate a choice between elements. You can specify any one of the elements
enclosed within the aligned braces.

m Ellipses indicate that you can repeat an element in the specification. The specification
T-TEST PAIRS=varlist [WITH varlist [(PAIRED)]] [/varlist ...]

means that you can specify multiple variable lists with optional WITH variables and the
keyword PAIRED in parentheses.

m Most abbreviations are obvious; for example, varname stands for variable name and
varlist stands for a variable list.

B The command terminator is not shown in the syntax diagram.

Command Specification

The following rules apply to all commands:

m Commands begin with a keyword that is the name of the command and often have additional
specifications, such as subcommands and user specifications. Refer to the discussion of each
command to see which subcommands and additional specifications are required.

m Commands and any command specifications can be entered in upper and lower case.
Commands, subcommands, keywords, and variable names are translated to upper case
before processing. All user specifications, including variable names, labels, and data values,
preserve upper and lower case.

B Spaces can be added between specifications at any point where a single blank is allowed. In
addition, lines can be broken at any point where a single blank is allowed. There are two
exceptions: the END DATA command can have only one space between words, and string
specifications on commands such as TITLE, SUBTITLE, VARIABLE LABELS, and VALUE

18

Universals

LABELS can be broken across two lines only by specifying a plus sign (+) between string
segments. For more information, see String Values in Command Specifications on p. 20.

B Many command names and keywords can be abbreviated to the first three or more characters
that can be resolved without ambiguity. For example, COMPUTE can be abbreviated to COMP
but not CoM because the latter does not adequately distinguish it from COMMENT. Some
commands, however, require that all specifications be spelled out completely. This restriction
is noted in the syntax chart for those commands.

Running Commands

You can run commands in either batch (production) or interactive mode. In batch mode,
commands are read and acted upon as a batch, so the system knows that a command is complete
when it encounters a new command. In interactive mode, commands are processed immediately,
and you must use a command terminator to tell SPSS when a command is complete.

Interactive Mode

The following rules apply to command specifications in interactive mode:

B Each command must start on a new line. Commands can begin in any column of a command
line and continue for as many lines as needed. The exception is the END DATA command,
which must begin in the first column of the first line after the end of data.

m Each command should end with a period as a command terminator. It is best to omit the
terminator on BEGIN DATA, however, so that inline data are treated as one continuous
specification.

The command terminator must be the last nonblank character in a command.

In the absence of a period as the command terminator, a blank line is interpreted as a
command terminator.

Note: For compatibility with other modes of command execution (including command files run
with INSERT or INCLUDE commands in an interactive session), each line of command syntax
should not exceed 256 bytes.

Batch (Production) Mode

The following rules apply to command specifications in batch or production mode:

B All commands in the command file must begin in column 1. You can use plus (+) or minus
(-) signs in the first column if you want to indent the command specification to make the
command file more readable.

If multiple lines are used for a command, column 1 of each continuation line must be blank.
Command terminators are optional.

A line cannot exceed 256 bytes; any additional characters are truncated.

The following is a sample command file that will run in either interactive or batch mode:

GET FILE='\MYFILES\BANK.SAV'

19

Universals

/KEEP ID TIME SEX JOBCAT SALBEG SALNOW
/RENAME SALNOW = SALSO0.

DO IF TIME LT 82.

+

COMPUTE RATE=0.05.

ELSE.

+

COMPUTE RATE=0.04.

END IF.

COMPUTE SALNOW= (1+RATE) *SAL90.

EXAMINE VARIABLES=SALNOW BY SEX.

Subcommands

Many commands include additional specifications called subcommands.

Keywords

Subcommands begin with a keyword that is the name of the subcommand. Most
subcommands include additional specifications.

Some subcommands are followed by an equals sign before additional specifications. The
equals sign is usually optional but is required where ambiguity is possible in the specification.

To avoid ambiguity, it is best to use the equals signs as shown in the syntax diagrams in
this manual.

Most subcommands can be named in any order. However, some commands require a specific

subcommand order. The description of each command includes a section on subcommand
order.

Subcommands are separated from each other by a slash. To avoid ambiguity, it is best to use
the slashes as shown in the syntax diagrams in this manual.

Keywords identify commands, subcommands, functions, operators, and other specifications.

Keywords identifying logical operators (AND, OR, and NOT); relational operators (EQ, GE,
GT, LE, LT, and NE); and ALL, BY, TO, and WITH are reserved words and cannot be used
as variable names.

Values in Command Specifications

The following rules apply to values specified in commands:

A single lowercase character in the syntax diagram, such as n, w, or d, indicates a
user-specified value.

The value can be an integer or a real number within a restricted range, as required by the
specific command or subcommand. For exact restrictions, read the individual command
description.

A number specified as an argument to a subcommand can be entered with or without leading
ZEeros.

20

Universals

String Values in Command Specifications

Each string specified in a command should be enclosed in single or double quotes.

To specify a single quote or apostrophe within a quoted string, either enclose the entire string
in double quotes or double the single quote/apostrophe. Both of the following specifications
are valid:

'Client''s Satisfaction'

"Client's Satisfaction"

To specify double quotes within a string, use single quotes to enclose the string:

'Categories Labeled "UNSTANDARD" in the Report'

String specifications can be broken across command lines by specifying each string segment
within quotes and using a plus (+) sign to join segments. For example,

'One, Two'

can be specified as

'One, '

+

Delimiters

' Two'

The plus sign can be specified on either the first or the second line of the broken string. Any
blanks separating the two segments must be enclosed within one or the other string segment.

Multiple blank spaces within quoted strings are preserved and can be significant. For
example, “This string” and “This string” are treated as different values.

Delimiters are used to separate data values, keywords, arguments, and specifications.

A blank is usually used to separate one specification from another, except when another
delimiter serves the same purpose or when a comma is required.

Commas are required to separate arguments to functions. Otherwise, blanks are generally
valid substitutes for commas.

Arithmetic operators (+, —, *, and /) serve as delimiters in expressions.

Blanks can be used before and after operators or equals signs to improve readability, but
commas cannot.

Special delimiters include parentheses, apostrophes, quotation marks, the slash, and the
equals sign. Blanks before and after special delimiters are optional.

The slash is used primarily to separate subcommands and lists of variables. Although slashes
are sometimes optional, it is best to enter them as shown in the syntax diagrams.

The equals sign is used between a keyword and its specifications, as in STATISTICS=MEAN,
and to show equivalence, as in COMPUTE target variable=expression. Equals signs
following keywords are frequently optional but are sometimes required. In general, you
should follow the format of the syntax charts and examples and always include equals signs
wherever they are shown.

21

Universals

Command Order

Command order is more often than not a matter of common sense and follows this logical
sequence: variable definition, data transformation, and statistical analysis. For example, you
cannot label, transform, analyze, or use a variable in any way before it exists. The following
general rules apply:

Commands that define variables for a session (DATA LIST, GET, GET DATA, MATRIX DATA,
etc.) must precede commands that assign labels or missing values to those variables; they
must also precede transformation and procedure commands that use those variables.

Transformation commands (IF, COUNT, COMPUTE, etc.) that are used to create and modify
variables must precede commands that assign labels or missing values to those variables, and
they must also precede the procedures that use those variables.

Generally, the logical outcome of command processing determines command order. For
example, a procedure that creates new variables in the active dataset must precede a
procedure that uses those new variables.

In addition to observing the rules above, it is often important to distinguish between commands
that cause the data to be read and those that do not, and between those that are stored pending
execution with the next command that reads the data and those that take effect immediately
without requiring that the data be read.

Commands that cause the data to be read, as well as execute pending transformations, include
all statistical procedures (e.g., CROSSTABS, FREQUENCIES, REGRESSION); some commands
that save/write the contents of the active dataset (e.g., DATASET COPY, SAVE TRANSLATE,
SAVE); AGGREGATE; AUTORECODE; EXECUTE; RANK; and SORT CASES.

Commands that are stored, pending execution with the next command that reads the data,
include transformation commands that modify or create new data values (e.g., COMPUTE,
RECODE), commands that define conditional actions (e.g., DO IF, IF, SELECT IF), PRINT,
WRITE, and XSAVE. For a comprehensive list of these commands, see Commands That

Are Stored, Pending Execution on p. 24.

Commands that take effect immediately without reading the data or executing pending
commands include transformations that alter dictionary information without affecting the
data values (e.g., MISSING VALUES, VALUE LABELS) and commands that don’t require
an active dataset (e.g., DISPLAY, HOST, INSERT, OMS, SET). In addition to taking effect
immediately, these commands are also processed unconditionally. For example, when
included within a DO IF structure, these commands run regardless of whether or not the
condition is ever met. For a comprehensive list of these commands, see Commands That
Take Effect Immediately on p. 22.

Example

DO IF expense = 0.

- COMPUTE profit=-99.

- MISSING VALUES expense (0).
ELSE.

- COMPUTE profit=income-expense.
END TF.

LIST VARIABLES=expense profit.

22

Universals

B COMPUTE precedes MISSING VALUES and is processed first; however, execution is delayed
until the data are read.

B MISSING VALUES takes effect as soon as it is encountered, even if the condition is never met
(i.e., even if there are no cases where expense=0).

B LIST causes the data to be read; thus, SPSS executes both COMPUTE and LIST during the
same data pass.

B Because MISSING VALUES is already in effect by this time, the first condition in the DO IF
structure will never be met, because an expense value of 0 is considered missing and so the
condition evaluates to missing when expense is 0.

Commands That Take Effect Inmediately

These commands take effect immediately. They do not read the active dataset and do not execute
pending transformations.

Commands That Modify the Dictionary
ADD DOCUMENT

ADD VALUE LABELS
APPLY DICTIONARY
DATAFILE ATTRIBUTE
DELETE VARIABLES
DOCUMENT

DROP DOCUMENTS
FILE LABEL

FORMATS

MISSING VALUES
MRSETS

NUMERIC

PRINT FORMATS
RENAME VARIABLES
STRING

VALUE LABELS
VARIABLE ALIGNMENT
VARIABLE ATTRIBUTE
VARIABLE LABELS
VARIABLE LEVEL
VARIABLE WIDTH

23

Universals

WEIGHT
WRITE FORMATS

Other Commands That Take Effect Inmediately
CD

CLEAR TRANSFORMATIONS
CSPLAN

DATASET CLOSE
DATASET DECLARE
DATASET DISPLAY
DATASET NAME
DISPLAY

ECHO

ERASE

FILE HANDLE
FILTER

HOST

INCLUDE

INSERT

MODEL CLOSE
MODEL HANDLE
MODEL LIST

N OF CASES

NEW FILE

OMS

OMSEND
OMSINFO
OMSLOG

OUTPUT ACTIVATE
OUTPUT CLOSE
OUTPUT DISPLAY
OUTPUT NAME
OUTPUT NEW
OUTPUT OPEN

24

Universals

OUTPUT SAVE
PERMISSIONS
PRESERVE
READ MODEL
RESTORE
SAVE MODEL
SCRIPT

SET

SHOW

SPLIT FILE
SUBTITLE
SYSFILE INFO
TDISPLAY
TITLE

TSET

TSHOW

USE

Commands That Are Stored, Pending Execution

These commands are stored, pending execution with the next command that reads the data.
BREAK

CACHE

COMPUTE

COUNT

DO IF

DO REPEAT-END REPEAT
IF

LEAVE

LOOP-END LOOP

PRINT

PRINT EJECT

PRINT SPACE

RECODE

25

Universals

SAMPLE
SELECT IF
TEMPORARY
VECTOR
WRITE
XSAVE
Files
SPSS reads, creates, and writes different types of files. This section provides an overview of the
types of files used in SPSS and discusses concepts and rules that apply to all files.
Command File
A command file is a text file that contains SPSS commands. You can type commands in a
syntax window in an interactive session, use the Paste button in dialog boxes to paste generated
commands into a syntax window, and/or use any text editor to create a command file. You can also
edit a journal file to produce a command file. For more information, see Journal File on p. 25. The
following is an example of a simple command file that contains both commands and inline data:
DATA LIST /ID 1-3 Gender 4 (A) Age 5-6 Opinionl TO Opinion5 7-11.
BEGIN DATA
001F2621221
002M5611122
003F3422212
329M2121212
END DATA.
LIST.
m Case does not matter for commands but is significant for inline data. If you specified f for
female and m for male in column 4 of the data line, the value of Gender would be f or
m instead of F" or M as it is now.
m Commands can be in upper or lower case. Uppercase characters are used for all commands
throughout this manual only to distinguish them from other text.
Journal File

SPSS keeps a journal file to record all commands either run from a syntax window or generated
from a dialog box during a session. You can retrieve this file with any text editor and review it to
learn how the session went. You can also edit the file to build a new command file and use it in
another run. An edited and tested journal file can be saved and used later for repeated tasks. The
journal file also records any error or warning messages generated by commands. You can rerun
these commands after making corrections and removing the messages.

26

Universals

The journal file is controlled by the General tab of the Options dialog box, available from the
Edit menu. You can turn journaling off and on, append or overwrite the journal file, and select the
journal filename and location. By default, commands from subsequent sessions are appended to
the journal, and the default journal filename is spss.jnl.

The following example is a journal file for a short session with a warning message.

Figure 2-2
Records from a journal file

DATA LIST /ID 1-3 Gender 4 (A) Age 5-6 Opinionl TO Opinion5 7-11.
BEGIN DATA

001F2621221

002M5611122

003F3422212

004F45112L2

>Warning # 1102

>An invalid numeric field has been found. The result has been set to the
>system-missing value.

END DATA.

LIST.

® The warning message, marked by the > symbol, tells you that an invalid numeric field has
been found. Checking the last data line, you will notice that column 10 is L, which is
probably a typographic error. You can correct the typo (for example, by changing the L to
1), delete the warning message, and submit the file again.

Data Files

SPSS is capable of reading and writing a wide variety of data file formats, including raw data files
created by a data entry device or a text editor, formatted data files produced by a data management
program, data files generated by other software packages, and SPSS-format data files.

Raw Data Files

Raw data files contain only data, either generated by a programming language or entered with
a data entry device or a text editor. SPSS can read raw data arranged in almost any format,
including raw matrix materials and nonprintable codes. User-entered data can be embedded
within a command file as inline data (BEGIN DATA-END DATA) or saved as an external file.
Nonprintable machine codes are usually stored in an external file.

Commands that read raw data files include:
B GET DATA

m DATA LIST

®m MATRIX DATA

Complex and hierarchical raw data files can be read using commands such as:
m INPUT PROGRAM

m FILE TYPE

®m REREAD

m REPEATING DATA

27

Universals

Data Files Created by Other Applications

You can read files from a variety of other software applications, including:

m Excel spreadsheets (GET DATA command).

m Database tables (GET DATA command).

m SPSS Dimensions data sources, including Quanvert, Quancept, and mrinterview (GET
DATA command).

B Delimited (including tab-delimited and CSV) and fixed-format text data files (DATA LIST,
GET DATA).

m dBase and Lotus files (GET TRANSLATE command).

m SAS datasets (GET SAS command).

m Stata data files (GET STATA command).

SPSS-Format Data Files

An SPSS-format data file is a file specifically formatted for use by SPSS, containing both data and
the metadata (dictionary) that define the data.

To save the active dataset in SPSS format, use SAVE or XSAVE. On most operating systems,
the default extension of a saved SPSS-format data file is .sav. An SPSS-format data file can
also be a matrix file created with the MATRIX=0UT subcommand on procedures that write
matrices.

To open an SPSS-format data file, use GET.

SPSS Data File Structure

The basic structure of an SPSS data file is similar to a database table:

Rows (records) are cases. Each row represents a case or an observation. For example, each
individual respondent to a questionnaire is a case.

Columns (fields) are variables. Each column represents a variable or characteristic that is
being measured. For example, each item on a questionnaire is a variable.

An SPSS data file also contains metadata that describes and defines the data contained in the
file. This descriptive information is called the dictionary. The information contained in the
dictionary includes:

Variable names and descriptive variable labels (VARIABLE LABELS command).
Descriptive values labels (VALUE LABELS command).

Missing values definitions (MISSING VALUES command).

Print and write formats (FORMATS command).

Use DISPLAY DICTIONARY to display the dictionary for the active dataset. For more
information, see DISPLAY on p. 544.You can also use SYSFILE INFO to display dictionary
information for any SPSS-format data file.

28

Universals

Long Variable Names

In some instances, data files with variable names longer than eight bytes require special

consideration:

m [fyou save a data file in portable format (see EXPORT on p. 586), variable names that exceed
eight bytes are converted to unique eight-character names. For example, mylongrootnamel,
mylongrootnameZ2, and mylongrootname3 would be converted to mylongro, mylong 2, and
mylong 3, respectively.

B When using data files with variable names longer than eight bytes in SPSS 10.x or 11.x,
unique, eight-byte versions of variable names are used; however, the original variable names
are preserved for use in release 12.0 or later. In releases prior to SPSS 10.0, the original long
variable names are lost if you save the data file.

B Matrix data files (commonly created with the MATRIX OUT subcommand, available in some
procedures) in which the VARNAME variable is longer than an eight-byte string cannot be
read by releases of SPSS prior to release 12.0.

Variables

The columns in an SPSS data file are variables. Variables are similar to fields in a database table.

B Variable names can be defined with numerous commands, including DATA LIST, GET
DATA, NUMERIC, STRING, VECTOR, COMPUTE, and RECODE. They can be changed
with the RENAME VARIABLES command.

® Optional variable attributes can include descriptive variable labels (VARIABLE LABELS
command), value labels (VALUE LABELS command), and missing value definitions
(MISSING VALUES command).

The following sections provide information on variable naming rules, syntax for referring to

inclusive lists of variables (keywords ALL and TO), scratch (temporary) variables, and system
variables.

Variable Names

Variable names are stored in the dictionary of an SPSS-format data file or active dataset. Observe

the following rules when establishing variable names or referring to variables by their names
on commands:

m Each variable name must be unique; duplication is not allowed.

B Variable names can be up to 64 bytes long, and the first character must be a letter or one
of the characters @, #, or $§. Subsequent characters can be any combination of letters,
numbers, a period (.), and nonpunctuation characters. Sixty-four bytes typically means
64 characters in single-byte languages (e.g., English, French, German, Spanish, Italian,
Hebrew, Russian, Greek, Arabic, and Thai) and 32 characters in double-byte languages (e.g.,
Japanese, Chinese, and Korean).

(Note: Letters include any nonpunctuation characters used in writing ordinary words in the
languages supported in the character set of the platform on which SPSS is running.)

29

Universals

Variable names cannot contain spaces.

A # character in the first position of a variable name defines a scratch variable. You can only
create scratch variables with command syntax. You cannot specify a # as the first character
of a variable in dialog boxes that create new variables. For more information, see Scratch
Variables on p. 31.

A § sign in the first position indicates that the variable is a system variable. For more
information, see System Variables on p. 31. The §$ sign is not allowed as the initial character
of a user-defined variable.

The period, underscore, and the characters $, #, and @ can be used within variable names.
For example, A. 3@#I is a valid variable name.

Variable names ending with a period should be avoided, since the period may be interpreted
as a command terminator. You can only create variables that end with a period in command
syntax. You cannot create variables that end with a period in dialog boxes that create new
variables.

Variable names ending in underscores should be avoided, since such names may conflict with
names of variables automatically created by commands and procedures.

Reserved keywords cannot be used as variable names. Reserved keywords are: ALL, AND,
BY, EQ, GE, GT, LE, LT, NE, NOT, OR, TO, and WITH.

Variable names can be defined with any mixture of uppercase and lowercase characters,
and case is preserved for display purposes.

When long variable names need to wrap onto multiple lines in output, SPSS attempts to break
the lines at underscores, periods, and where content changes from lower case to upper case.

Mixed Case Variable Names

Variable names can be defined with any mixture of upper- and lowercase characters, and case
is preserved for display purposes.

Variable names are stored and displayed exactly as specified on commands that read data or
create new variables. For example, compute NewVar = 1 creates a new variable that will
be displayed as NewVar in the Data Editor and in output from any procedures that display
variable names.

Commands that refer to existing variable names are not case sensitive. For example,
FREQUENCIES VARIABLES = newvar, FREQUENCIES VARIABLES = NEWVAR, and
FREQUENCIES VARIABLES = NewVar are all functionally equivalent.

In languages such as Japanese, where some characters exist in both narrow and wide forms,
these characters are considered different and are displayed using the form in which they
were entered.

When long variable names need to wrap onto multiple lines in output, SPSS attempts to break
lines at underscores, periods, and changes from lower to upper case.

You can use the RENAME VARIABLES command to change the case of any characters in a
variable name.

30

Universals

Example

RENAME VARIABLES (newvariable = NewVariable).

m For the existing variable name specification, case is ignored. Any combination of upper
and lower case will work.

m For the new variable name, case will be preserved as entered for display purposes.

For more information, see the RENAME VARIABLES command.

Long Variable Names

In some instances, data files with variable names longer than eight bytes require special
consideration:

m [fyou save a data file in portable format (see EXPORT on p. 586), variable names that exceed
eight bytes are converted to unique eight-character names. For example, mylongrootnamel,
mylongrootname?2, and mylongrootname3 would be converted to mylongro, mylong 2, and
mylong 3, respectively.

B When using data files with variable names longer than eight bytes in SPSS 10.x or 11.x,
unique, eight-byte versions of variable names are used; however, the original variable names
are preserved for use in release 12.0 or later. In releases prior to SPSS 10.0, the original long
variable names are lost if you save the data file.

B Matrix data files (commonly created with the MATRIX OUT subcommand, available in some
procedures) in which the VARNAME variable is longer than an eight-byte string cannot be
read by releases of SPSS prior to release 12.0.

Keyword TO

You can establish names for a set of variables or refer to any number of consecutive variables by
specifying the beginning and the ending variables joined by the keyword TO.

To establish names for a set of variables with the keyword TO, use a character prefix with a
numeric suffix.

® The prefix can be any valid name. Both the beginning and ending variables must use the
same prefix.

B The numeric suffix can be any integer, but the first number must be smaller than the second.
For example, ITEM1 TO ITEMS establishes five variables named ITEMI, ITEM?2, ITEM3,
ITEM4, and ITEMS.

B [eading zeros used in numeric suffixes are included in the variable name. For example, v001
TO V100 establishes 100 variables—V001, V002, V003, ..., V100. v1 TO v100 establishes
100 variables—V1, V2, V3, ..., V100.

The keyword TO can also be used on procedures and other commands to refer to consecutive
variables on the active dataset. For example, AVAR TO VARB refers to the variables 4VAR and all
subsequent variables up to and including VARB.

31

Universals

® In most cases, the TO specification uses the variable order on the active dataset. Use the
DISPLAY command to see the order of variables on the active dataset.

B On some subcommands, the order in which variables are named on a previous subcommand,
usually the VARTABLES subcommand, is used to determine which variables are consecutive
and therefore are implied by the TO specification. This is noted in the description of
individual commands.

Keyword ALL

The keyword ALL can be used in many commands to specify all of the variables in the active
dataset. For example,

FREQUENCIES /VARIABLES = ALL.

or

OLAP CUBES income by ALL.

In the second example, a separate table will be created for every variable in the data file, including
a table of income by income.

Scratch Variables

Scratch variables are variables created for the sole purpose of facilitating operations during
a session.

m To create a scratch variable, specify a variable name that begins with the # character—for
example, #ID. Scratch variables can be either numeric or string.

Scratch variables are initialized to 0 for numeric variables or blank for string variables.

SPSS does not reinitialize scratch variables when reading a new case. Their values are always
carried across cases. Therefore, a scratch variable is a good choice for a looping index.

Do not use LEAVE with a scratch variable.
Scratch variables cannot be used in procedures and cannot be saved in a data file.

Scratch variables cannot be assigned missing values, variable labels, or value labels.

Scratch variables can be created between procedures but are always discarded as the next
procedure begins.

Scratch variables are discarded once a TEMPORARY command is specified.
The keyword T0O cannot refer to scratch variables and permanent variables at the same time.

Scratch variables cannot be named on a WETGHT command.
System Variables
System variables are special variables created during a working session to keep system-required

information, such as the number of cases read by the system, the system-missing value, and the
current date. System variables can be used in data transformations.

32

Universals

The names of system variables begin with a dollar sign ($).

You cannot modify a system variable or alter its print or write format. Except for these
restrictions, you can use system variables anywhere that a normal variable is used in the
transformation language.

m System variables are not available for procedures.

$CASENUM Current case sequence number. For each case, §CASENUM is the number of cases
read up to and including that case. The format is ¥8. 0. The value of $CASENUM is
not necessarily the row number in a Data Editor window (available in windowed
environments), and the value changes if the file is sorted or new cases are inserted
before the end of the file.

$SYSMIS System-missing value. The system-missing value displays as a period (.) or
whatever is used as the decimal point.
$JDATE Current date in number of days from October 14, 1582 (day 1 of the Gregorian

calendar). The format is F6. 0.

$SDATE Current date in international date format with two-digit year. The format is A9 in
the form dd-mmm-yy.

$SDATE11 Current date in international date format with four-digit year. The format is A11 in
the form dd-mmm-yyyy.

$STIME Current date and time. $TIME represents the number of seconds from midnight,
October 14, 1582, to the date and time when the transformation command is
executed. The format is F20. You can display this as a date in a number of different
date formats. You can also use it in date and time functions.

SLENGTH The current page length. The format is F11. 0. For more information, see SET.
SWIDTH The current page width. The format is F3 . 0. For more information, see SET.

Variable Types and Formats

SPSS recognizes two basic variable types:

m String. Also referred to alphanumeric. String values are stored as codes listed in the SPSS
character set. For more information, see IMPORT/EXPORT Character Sets on p. 1903.

® Numeric. Numeric values are stored internally as double-precision floating-point numbers.

Variable formats determine how SPSS reads raw data into storage and how it displays and writes
out values. For example, all dates and times are stored internally as numeric values, but you can
use date and time format specifications to both read and display date and time values in standard
date and time formats. The following sections provide details on how formats are specified and
how those formats affect how data are read, displayed, and written.

Input and Output Formats

Values are read according to their input format and displayed according to their output format.
The input and output formats differ in several ways.

m The input format is either specified or implied on the DATA LIST, GET DATA, or other data
definition commands. It is in effect only when SPSS builds cases in an active dataset.

33

Universals

Output formats are automatically generated from input formats, with output formats expanded
to include punctuation characters, such as decimal indicators, grouping symbols, and

dollar signs. For example, an input format of DOLLAR7 . 2 will generate an output format

of DOLLAR10. 2 to accommodate the dollar sign, grouping symbol (comma), and decimal
indicator (period).

The formats (specified or default) on NUMERIC, STRING, COMPUTE, or other commands that

create new variables are output formats. You must specify adequate widths to accommodate
all punctuation characters.

The output format is in effect during the entire working session (unless explicitly changed)
and is saved in the dictionary of an SPSS-format data file.

Output formats for numeric variables can be changed with FORMATS, PRINT FORMATS,
and WRITE FORMATS.

The width for string variables cannot be changed with command syntax. However, you can
use STRING to declare a new variable with the desired format and then use COMPUTE to
copy values from the existing string variable into the new variable.

The format type cannot be changed from string to numeric, or vice versa, with command
syntax. However, you can use RECODE to recode values from one variable into another
variable of a different type.

String Variable Formats

The values of string variables can contain numbers, letters, and special characters and can
be up to 32,767 characters long.

SPSS differentiates between long strings and short strings. A short string is a string variable
with a maximum width of eight bytes. A long string is a string variable with a maximum
width greater than eight bytes. Long strings cannot have user-missing values, and some
procedures that accept short string variables do not accept long string variables.

System-missing values cannot be generated for string variables, since any character is a
legal string value.

When a transformation command that creates or modifies a string variable yields a missing
or undefined result, a null string is assigned. The variable displays as blanks and is not
treated as missing.

String formats are used to read and write string variables. The input values can be
alphanumeric characters (a format) or the hexadecimal representation of alphanumeric
characters (AHEX format).

For fixed-format raw data, the width can be explicitly specified on commands such as DATA
LIST and GET DATA or implied if column-style specifications are used. For freefield data,
the default width is 1; if the input string may be longer, w must be explicitly specified. Input
strings shorter than the specified width are right-padded with blanks.

The output format for a string variable is always A. The width is determined by the input
format or the format assigned on the STRING command. Once defined, the width of a string
variable cannot be changed.

34

Universals

A Format (Standard Characters)

The A format is used to read standard characters. Characters can include letters, numbers,
punctuation marks, blanks, and most other characters on your keyboard. Numbers entered as
values for string variables cannot be used in calculations unless you convert them to numeric
format with the NUMBER function. For more information, see String/Numeric Conversion
Functions on p. 76.

Fixed data:

With fixed-format input data, any punctuation—including leading, trailing, and embedded
blanks—within the column specifications is included in the string value. For example, a string
value of

Mr. Ed

(with one embedded blank) is distinguished from a value of

Mr. Ed

(with two embedded blanks). It is also distinguished from a string value of

MR. ED

(all upper case), and all three are treated as separate values. These can be important considerations
for any procedures, transformations, or data selection commands involving string variables.
Consider the following example:

DATA LIST FIXED /ALPHAVAR 1-10 (A).
BEGIN DATA

Mr. Ed

Mr. Ed

MR. ED

Mr. Ed

Mr. Ed

END DATA.

AUTORECODE ALPHAVAR /INTO NUMVAR.
LIST.

AUTORECODE recodes the values into consecutive integers. The following figure shows the
recoded values.

Figure 2-3
Different string values illustrated

ALPHAVAR NUMVAR

Mr. E4d 4
Mr. Ed 4
MR. ED 2
Mr. Ed 3
Mr. Ed 1

35

Universals
AHEX Format (Hexadecimal Characters)

The AHEX format is used to read the hexadecimal representation of standard characters. Each set
of two hexadecimal characters represents one standard character. For codes used on different
operating systems, see /IMPORT/EXPORT Character Sets on p. 1903.

m The w specification refers to columns of the hexadecimal representation and must be an even
number. Leading, trailing, and embedded blanks are not allowed, and only valid hexadecimal
characters can be used in input values.

® For some operating systems (e.g., IBM CMYS), letters in hexadecimal values must be upper
case.

m The default output format for variables read with the AHEX input format is the A format. The
default width is half the specified input width. For example, an input format of AHEX14
generates an output format of A7.

m Used as an output format, the AHEX format displays the printable characters in the hexadecimal
characters specific to your system. The following commands run on a UNIX system—where
A=41 (decimal 65), a=61 (decimal 97), and so on—produce the output shown below:

DATA LIST FIXED
/A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S5,T,U,V,W,X,Y,Z2 1-26 (A).

FORMATS ALL (AHEX2).

BEGIN DATA

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopgrstuvwxyz

END DATA.

LIST.

Figure 2-4
Display of hexadecimal representation of the character set with AHEX format

A B C D EF GH I J KL MNO P QR S T UV W X Y 2

41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 TA

Numeric Variable Formats

m By default, if no format is explicitly specified, commands that read raw data—such as DATA
LIST and GET DATA—assume that variables are numeric with an F format type. The default
width depends on whether the data are in fixed or freefield format. For a discussion of fixed
data and freefield data, see DATA LIST on p. 448.

® Numeric variables created by COMPUTE, COUNT, or other commands that create numeric
variables are assigned a format type of F8. 2(or the default numeric format defined on SET
FORMAT).

m [fa data value exceeds its width specification, SPSS makes an attempt to display some value
nevertheless. It first rounds the decimals, then takes out punctuation characters, then tries
scientific notation, and if there is still not enough space, produces asterisks (***), indicating
that a value is present but cannot be displayed in the assigned width.

36

Universals

EN,

m The output format does not affect the value stored in the file. A numeric value is always
stored in double precision.

® For default numeric (F) format and scientific notation (E) format, the decimal indicator of the
input data from text data sources (read by commands such as DATA LIST and GET DATA)
must match the SPSS locale decimal indicator (period or comma). Use SET DECIMAL to set
the decimal indicator. Use SHOW DECIMAL to display the current decimal indicator.

and E Formats

The following table lists the formats most commonly used to read in and write out numeric data.
Format names are followed by total width (w) and an optional number of decimal positions (d).
For example, a format of F5.2 represents a numeric value with a total width of 5, including
two decimal positions and a decimal indicator.

Table 2-1
Common numeric formats

Format | Description | Sample | Sample | Output for fixed Output for freefield
type format |input |input input
Format | Value Format | Value
Fw.d Standgrd F5.0 1234 |F5.0 1234 F5.0 1234
numeric 1232 ¥ ¥
F5.2 1234 |F6.2 12.34 F6.2 1234.0
1.234 1.23 1.23
Nw.d Restriqted N5.0 00123 |F5.0 123 F5.0 123
numeric 123 i 123
N5.2 12345 |F6.2 123.45 F6.2 12345
12.34 T T
Ew.d Scientific E8.0 1234E3|E10.3 [1.234E+06 |E10.3 |1.234E+06%
notation 1234 12345403 12345403

* Only the display is truncated. The value is stored in full precision.

T System-missing value.

I Scientific notation is accepted in input data with F, COMMA, DOLLAR, DOT, and PCT formats. The
same rules apply as specified below.

For fixed data:

m [f a value has no coded decimal point but the input format specifies decimal positions, the
rightmost positions are interpreted as implied decimal digits. For example, if the input F
format specifies two decimal digits, the value 1234 is interpreted as 12.34; however, the value
123.4 is still interpreted as 123.4.

m With the N format, decimal places can only be implied. Only unsigned integers are allowed as
input values. Values not padded with leading zeros to the specified width or those containing
decimal points are assigned the system-missing value. This format is useful for reading and
checking values that should be integers containing leading zeros.

37

Universals

B The E format reads all forms of scientific notation. If the sign is omitted, + is assumed. If
the sign (+ or —) is specified before the exponent, the £ or D can be omitted. A single space
is permitted after the £ or D and/or after the sign. If both the sign and the letter £ or D are
omitted, implied decimal places are assumed. For example, 1.234E3, 1.234+3, 1.234E+3,
1.234D3, 1.234D+3, 1.234E 3, and 1234 are all legitimate values. Only the last value can
imply decimal places.

m E format input values can be up to 40 characters wide and include up to 15 decimal positions.

® The default output width (w) for the E format is either the specified input width or the number
of specified decimal positions plus 7 (d+7), whichever is greater. The minimum width is
10 and the minimum decimal places are 3.

For freefield data:

m r format w and d specifications do not affect how data are read. They only determine the
output formats (expanded, if necessary). 1234 is always read as 1234 in freefield data, but a
specified F5. 2 format will be expanded to F6 .2 and the value will be displayed as 1234.0
(the last decimal place is rounded because of lack of space).

® When the N format is used for freefield data, input values with embedded decimal indicators
are assigned the system-missing value, but integer input values without leading zeroes are
treated as valid. For example, with an input format of N5.0, a value of 123 is treated the same
as a value of 00123, but a value of 12.34 is assigned the system-missing value.

m The E format for freefield data follows the same rules as for fixed data except that no blank
space is permitted in the value. Thus, 1.234E3 and 1.234+3 are allowed, but the value 1.234
3 will cause mistakes when the data are read.

B The default output E format and the width and decimal place limitations are the same as
with fixed data.

N (Restricted Numeric) Output Format

N format input values are assigned an F output format. To display, print, and write N format
values with leading zeroes, use the FORMATS command to specify N as the output format. For
more information, see FORMATS on p. 638.

COMMA, DOT, DOLLAR, and PCT Formats

The numeric formats listed below read and write data with embedded punctuation characters and
symbols, such as commas, dots, and dollar and percent signs. The input data may or may not
contain such characters. The data values read in are stored as numbers but displayed using the
appropriate formats.

m DOLLAR. Numeric values with a leading dollar sign, a comma used as the grouping separator,
and a period used as the decimal indicator. For example, $1,234.56.

®m COMMA. Numeric values with a comma used as the grouping separator and a period used as
decimal indicator. For example, 1,234.56.

38

Universals

m DOT. Numeric values with a period used as the grouping separator and a comma used as the
decimal indicator. For example, 1.234,56.

m PCT. Numeric values with a trailing percent sign. For example, 123.45%.

The input data values may or may not contain the punctuation characters allowed by the specified
format, but the data values may not contain characters not allowed by the format. For example,
with a DOLLAR input format, input values of 1234.56, 1,234.56, and $1,234.56 are all valid and
stored internally as the same value—but with a cOMMA input format, the input value with a
leading dollar sign would be assigned the system-missing value.

DATA LIST LIST (" ") /dollarVar (DOLLAR9.2) commaVar (COMMA9.2)
dotVar (DOT9.2) pctVar (PCT9.2).

BEGIN DATA

1234 1234 1234 1234

$1,234.00 1,234.00 1.234,00 1234.00%

END DATA.

LIST.

Figure 2-5

Output illustrating DOLLAR, COMMA, DOT, and PCT formats
dollarVar commavar dotVar pctVar
$1,234.00 1,234.00 1.234,00 1234.00%
$1,234.00 1,234.00 1.234,00 1234.00%

Other formats that use punctuation characters and symbols are date and time formats and custom
currency formats. For more information on date and time formats, see Date and Time Formats on
p. 41. Custom currency formats are output formats only, and are defined with the SET command.

Binary and Hexadecimal Formats

SPSS is capable of reading and writing data in formats used by a number of programming
languages such as PL/I, COBOL, FORTRAN, and Assembler. The data can be binary,
hexadecimal, or zoned decimal. Formats described in this section can be used both as input
formats and output formats, but with fixed data only. The described formats are not available on
all systems. Consult the SPSS Base User s Guide for your version of SPSS for details.

The default output format for all formats described in this section is an equivalent F format,
allowing the maximum number of columns for values with symbols and punctuation. To change
the default, use FORMATS or WRITE FORMATS.

IBw.d (integer binary):

The 1B format reads fields that contain fixed-point binary (integer) data. The data might be
generated by COBOL using COMPUTATIONAL data items, by FORTRAN using INTEGER*2
or INTEGER*4, or by Assembler using fullword and halfword items. The general format is a
signed binary number that is 16 or 32 bits in length.

39

Universals

The general syntax for the IB format is IBw. d, where w is the field width in bytes (omitted for
column-style specifications) and d is the number of digits to the right of the decimal point. Since
the width is expressed in bytes and the number of decimal positions is expressed in digits, d can
be greater than w. For example, both of the following commands are valid:

DATA LIST FIXED /VAR1 (IB4.8).

DATA LIST FIXED /VAR1l 1-4 (IB,8).

Widths of 2 and 4 represent standard 16-bit and 32-bit integers, respectively. Fields read with
the 1B format are treated as signed. For example, the one-byte binary value 11111111 would
be read as —1.

PIBw.d (positive integer binary):

The pIB format is essentially the same as IB except that negative numbers are not allowed.
This restriction allows one additional bit of magnitude. The same one-byte value 11111111
would be read as 255.

PIBHEXw (hexadecimal of PIB):

The PIBHEX format reads hexadecimal numbers as unsigned integers and writes positive integers
as hexadecimal numbers. The general syntax for the PTBHEX format is PIBHEXw, where w
indicates the total number of hexadecimal characters. The w specification must be an even
number with a maximum of 16.

For input data, each hexadecimal number must consist of the exact number of characters. No
signs, decimal points, or leading and trailing blanks are allowed. For some operating systems
(such as IBM CMS), hexadecimal characters must be upper case. The following example
illustrates the kind of data that the PTBHEX format can read:

DATA LIST FIXED
/VAR1 1-4 (PIBHEX) VAR2 6-9 (PIBHEX) VAR3 11-14 (PIBHEX).
BEGIN DATA
0001 0002 0003
0004 0005 0006
0007 0008 0009
000A 000B 0O0OC
000D OOOE OO0OF
00F0 0B2C FFFF
END DATA.
LIST.

The values for VAR, VAR2, and VAR3 are listed in the figure below. The PTBHEX format can also
be used to write decimal values as hexadecimal numbers, which may be useful for programmers.

Figure 2-6
Output displaying values read in PIBHEX format

VAR1 VAR2 VAR3

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15

240 2860 65535

40

Universals

Zw.d (zoned decimal):

The z format reads data values that contain zoned decimal data. Such numbers may be generated
by COBOL systems using DISPLAY data items, by PL/I systems using PICTURE data items, or
by Assembler using zoned decimal data items.

In zoned decimal format, one digit is represented by one byte, generally hexadecimal F1
representing 1, F2 representing 2, and so on. The last byte, however, combines the sign for
the number with the last digit. In the last byte, hexadecimal A, F, or C assigns +, and B, D, or
E assigns —. For example, hexadecimal D1 represents 1 for the last digit and assigns the minus
sign (—) to the number.

The general syntax of the z format is zw. d, where w is the total number of bytes (which is the
same as columns) and d is the number of decimals. For input data, values can appear anywhere
within the column specifications. Both leading and trailing blanks are allowed. Decimals can
be implied by the input format specification or explicitly coded in the data. Explicitly coded
decimals override the input format specifications.

The following example illustrates how the Z format reads zoned decimals in their printed
forms on IBM mainframe and PC systems. The printed form for the sign zone (A to I for +1 to
+9, and so on) may vary from system to system.

DATA LIST FIXED /VAR1l 1-5 (Z) VAR2 7-11 (Z,2) VAR3 13-17 (Z2)
VAR4 19-23 (Z,2) VAR5 25-29 (Z) VAR6 31-35 (Z,2).
BEGIN DATA

1234A 1234A 1234B 1234B 1234C 1234C

1234D 1234D 1234E 1234E 1234F 1234F

1234G 1234G 1234H 1234H 12341 12341

1234J 12343 1234K 1234K 1234L 1234L

1234M 1234M 1234N 1234N 12340 12340

1234P 1234P 1234Q 12340 1234R 1234R

1234{ 1234{ 1234} 1234} 1.23M 1.23M

END DATA.

LIST.

The values for VAR to VARG are listed in the following figure.

Figure 2-7
Output displaying values read in Z format

VAR1 VAR2 VAR3 VAR4 VARS VARG

12341 123.41 12342 123.42 12343 123.43
12344 123.44 12345 123.45 12346 123.46
12347 123.47 12348 123.48 12349 123.49
-12341 -123.41 -12342 -123.42 -12343 -123.43
-12344 -123.44 -12345 -123.45 -12346 -123.46
-12347 -123.47 -12348 -123.48 -12349 -123.49
12340 123.40 -12340 -123.40 -1 -1.23

The default output format for the z format is the equivalent ¥ format, as shown in the figure. The
default output width is based on the input width specification plus one column for the sign and
one column for the implied decimal point (if specified). For example, an input format of z4 .0
generates an output format of F5. 0, and an input format of z4 . 2 generates an output format

of F6.2.

41

Universals

Pw.d (packed decimal):

The p format is used to read fields with packed decimal numbers. Such numbers are generated
by COBOL using COMPUTATIONAL-3 data items and by Assembler using packed decimal
data items. The general format of a packed decimal field is two four-bit digits in each byte
of the field except the last. The last byte contains a single digit in its four leftmost bits and
a four-bit sign in its rightmost bits. If the last four bits are 1111 (hexadecimal F), the value is
positive; if they are 1101 (hexadecimal D), the value is negative. One byte under the P format
can represent numbers from -9 to 9.

The general syntax of the p format is Pw.d, where w is the number of bytes (not digits) and
d is the number of digits to the right of the implied decimal point. The number of digits in a
field is (2*w—1).

PKw.d (unsigned packed decimal):

The PK format is essentially the same as P except that there is no sign. That is, even the rightmost
byte contains two digits, and negative data cannot be represented. One byte under the PK format
can represent numbers from 0 to 99. The number of digits in a field is 2*w.

RBw (real binary):

The RB format is used to read data values that contain internal format floating-point numbers.
Such numbers are generated by COBOL using COMPUTATIONAL—-1 or COMPUTATIONAL-2
data items, by PL/I using FLOATING DECIMAL data items, by FORTRAN using REAL or
REAL*8 data items, or by Assembler using floating-point data items.

The general syntax of the RB format is RBw, where w is the total number of bytes. The width
specification must be an even number between 2 and 8. Normally, a width specification of 8 is
used to read double-precision values, and a width of 4 is used to read single-precision values.

RBHEXw (hexadecimal of RB):

The RBHEX format interprets a series of hexadecimal characters as a number that represents a
floating-point number. This representation is system-specific. If the field width is less than twice
the width of a floating-point number, the value is right-padded with binary zeros. For some
operating systems (for example, IBM CMS), letters in hexadecimal values must be upper case.

The general syntax of the RBHEX format is RBHEXw, where w indicates the total number of
columns. The width must be an even number. The values are real (floating-point) numbers.
Leading and trailing blanks are not allowed. Any data values shorter than the specified input
width must be padded with leading zeros.

Date and Time Formats

Date and time formats are both input and output formats. Like numeric formats, each input format
generates a default output format, automatically expanded (if necessary) to accommodate display
width. Internally, all date and time format values are stored as a number of seconds: date formats
(e.g., DATE, ADATE, SDATE, DATETIME) are stored as the number of seconds since October 14,

42

Universals

1582; time formats (TIME, DTIME) are stored as a number of seconds that represents a time
interval (e.g., 10:00:00 is stored internally as 36000, which is 60 seconds x 60 minutes x 10 hours).

All date and time formats have a minimum input width, and some have a different minimum
output. Wherever the input minimum width is less than the output minimum, SPSS expands
the width automatically when displaying or printing values. However, when you specify
output formats, you must allow enough space for displaying the date and time in the format
you choose.

Input data shorter than the specified width are correctly evaluated as long as all the necessary
elements are present. For example, with the TIME format, 1:2, 01 2, and 01:02 are all
correctly evaluated even though the minimum width is 5. However, if only one element
(hours or minutes) is present, you must use a time function to aggregate or convert the data.
For more information, see Date and Time Functions on p. 64.

If a date or time value cannot be completely displayed in the specified width, values are
truncated in the output. For example, an input time value of 1:20:59 (1 hour, 20 minutes, 59
seconds) displayed with a width of 5 will generate an output value of 01:20, not 01:21. The
truncation of output does not affect the numeric value stored in the working file.

The following table shows all available date and time formats, where w indicates the total number
of columns and d (if present) indicates the number of decimal places for fractional seconds. The
example shows the output format with the minimum width and default decimal positions (if
applicable). The format allowed in the input data is much less restrictive. For more information,
see Input Data Specification on p. 43.

Table 2-2
Date and time formats
Format type Description |Minw |Maxw |Maxd | General form Example
In | Out
DATEw International |9 |9 40 dd-mmm-yy 28-OCT-90
date 10 |11 dd-mmm-yyyy 28-0CT-1990
ADATEw American 8 |8 40 mm/dd/yy 10/28/90
date 10 10 mm/ddlyyyy 10/28/1990
EDATEw European 8 |8 40 dd.mm.yy 28.10.90
date 10 [10 dd.mm.yyyy 28.10.1990
JDATEw Julian date 40 yyddd 90301
7 |7 yyyyddd 1990301
SDATEw Sortable 8 |8 40 yy/mm/dd 90/10/28
date™ 10 [10 yyyy/mm/dd 1990/10/28
QYRw Quarter and (4 |6 40 qQyy 4Q90
yer 6 |3 aQyyyy 4Q 1990
MOYRw Month and 6 |6 40 mmm yy OCT 90
year 8 |8 mmm yyyy OCT 1990
WKYRw Week and 6 |8 40 ww WK yy 43 WK 90
year 8 |10 ww WK yyyy 43 WK 1990

43

Universals
Format type Description |Minw |Maxw |Maxd | General form Example
In | Out

WKDAYw Day of the |2 |2 40 (name of the day) SU

week
MONTHw Month 3 |3 40 (name of the month) JAN
TIMEw Time 5 15 40 hh:mm 01:02
TIMEw.d 10 |10 |40 16 hh:mm:ss.s 01:02:34.75
DTIMEw Days and 1 |1 40 dd hh:mm 20 08:03
DTIMEw.d time 13 13 [40 16 dd hh:mm:ss.s 20 08:03:00
DATETIMEw | Date and 17 |17 |40 dd-mmm-yyyy hh:mm | 20-JUN-1990

time 08:03
DATETIMEw.d 22 (22 |40 16 dd-mmm-yyyy 20-JUN-1990

hh:mm:ss.s 08:03:00

* All date and time formats produce sortable data. SDATE, a date format used in a number of
Asian countries, can be sorted in its character form and is used as a sortable format by many
programmers.

Input Data Specification

The following general rules apply to date and time input formats:

m The century value for two-digit years is defined by the SET EPOCH value. By default, the
century range begins 69 years prior to the current year and ends 30 years after the current
year. Whether all four digits or only two digits are displayed in output depends on the width
specification on the format.

m Dashes, periods, commas, slashes, or blanks can be used as delimiters in the input values. For
example, with the DATE format, the following input forms are all acceptable:

28-0CT-90 28/10/1990 28.0CT.90 28 October, 1990

The displayed values, however, will be the same: 28-OCT-90 or 28-OCT-1990, depending on
whether the specified width allows 11 characters in output.

® The JDATE format does not allow internal delimiters and requires leading zeros for day values
of less than 100 and two-digit-year values of less than 10. For example, for January 1, 1990,
the following two specifications are acceptable:

90001 1990001

44

Universals

However, neither of the following is acceptable:
90 1 90/1

® Months can be represented in digits, Roman numerals, or three-character abbreviations, and
they can be fully spelled out. For example, all of the following specifications are acceptable
for October:

10 X OCT October

® The quarter in QYR format is expressed as 1, 2, 3, or 4. It must be separated from the year by
the letter Q. Blanks can be used as additional delimiters. For example, for the fourth quarter
of 1990, all of the following specifications are acceptable:

4090 401990 4 © 90 4 Q 1990

On some operating systems, such as IBM CMS, Q must be upper case. The displayed output
is 4 O 90 or 4 Q 1990, depending on whether the width specified allows all four digits of
the year.

m The week in the WKYR format is expressed as a number from 1 to 53. Week 1 begins on
January 1, week 2 on January 8, and so on. The value may be different from the number of
the calendar week. The week and year must be separated by the string WK. Blanks can be
used as additional delimiters. For example, for the 43rd week of 1990, all of the following
specifications are acceptable:

43WKO0 43WK1990 43 WK 90 43 WK 1990

On some operating systems, such as IBM CMS, Wk must be upper case. The displayed
output is 43 WK 90 or 43 WK 1990, depending on whether the specified width allows enough
space for all four digits of the year.

m In time specifications, colons can be used as delimiters between hours, minutes, and seconds.
Hours and minutes are required, but seconds are optional. A period is required to separate
seconds from fractional seconds. Hours can be of unlimited magnitude, but the maximum
value for minutes is 59 and for seconds 59.999. . . .

m Data values can contain a sign (+ or —) in TIME and DTIME formats to represent time intervals
before or after a point in time.

Example: DATE, ADATE, and JDATE

DATA LIST FIXED
/VAR1 1-17 (DATE) VAR2 21-37 (ADATE) VAR3 41-47 (JDATE) .
BEGIN DATA

28-10-90 10/28/90 90301
28.0CT.1990 X 28 1990 1990301
28 October, 2001 Oct. 28, 2001 2001301
END DATA.

LIST.

m Internally, all date format variables are stored as the number of seconds from 0 hours, 0
minutes, and 0 seconds of Oct. 14, 1582.

The LIST output from these commands is shown in the following figure.

45

Universals

Figure 2-8

Output illustrating DATE, ADATE, and JDATE formats
VAR1 VAR2 VAR3

28-0CT-1990 10/28/1990 1990301

28-0CT-1990 10/28/1990 1990301

28-0CT-2001 10/28/2001 2001301

Example: QYR, MOYR, and WKYR

DATA LIST FIXED /VAR1 1-10 (QYR) VAR2 12-25 (MOYR) VAR3 28-37 (WKYR).
BEGIN DATA

4090 10/90 43WK90

4 Q0 90 Oct-1990 43 WK 1990
4 Q 2001 October, 2001 43 WK 2001
END DATA.

LIST.

m Internally, the value of a QYR variable is stored as midnight of the first day of the first month
of the specified quarter, the value of a MOYR variable is stored as midnight of the first day of
the specified month, and the value of a WkYR format variable is stored as midnight of the first
day of the specified week. Thus, 4090 and 10/90 are both equivalent to October 1, 1990, and
43WK90 is equivalent to October 22, 1990.

The LIST output from these commands is shown in the following figure.

Figure 2-9

Output illustrating QYR, MOYR, and WKYR formats
VAR1 VAR2 VAR3

4 Q 1990 OCT 1990 43 WK 1990

4 Q 1990 OCT 1990 43 WK 1990

4 Q 2001 OCT 2001 43 WK 2001

Example: TIME

DATA LIST FIXED
/VAR1 1-11 (TIME,2) VAR2 13-21 (TIME) VAR3 23-28 (TIME).
BEGIN DATA
1:2:34.75 1:2:34.75 1:2:34
END DATA.
LIST.

B TIME reads and writes time of the day or a time interval.

m Internally, the TIME values are stored as the number of seconds from midnight of the day or
of the time interval.

The LIST output from these commands is shown in the following figure.

Figure 2-10
Output illustrating TIME format

VAR1 VAR2 VAR3

1:02:34.75 1:02:34 1:02

46

Universals

Example: WKDAY and MONTH

DATA LIST FIXED

/VAR1 1-9 (WKDAY) VAR2 10-18 (WKDAY)

VAR3 20-29 (MONTH) VAR4 30-32 (MONTH) VAR5 35-37 (MONTH) .
BEGIN DATA

Sunday Sunday January 1 Jan
Monday Monday February 2 Feb
Tues Tues March 3 Mar
Wed Wed April 4 Apr
Th Th Oct 10 Oct
Fr Fr Nov 11 Nov
Sa Sa Dec 12 Dec
END DATA.

FORMATS VAR2 VAR5 (F2).

LIST.

WKDAY reads and writes the day of the week; MONTH reads and writes the month of the year.

Values for WKDAY are entered as strings but stored as numbers. They can be used in arithmetic
operations but not in string functions.

B Values for MONTH can be entered either as strings or as numbers but are stored as numbers.
They can be used in arithmetic operations but not in string functions.

m To display the values as numbers, assign an F format to the variable, as was done for VAR?2
and VAR5 in the above example.

The LIST output from these commands is shown in the following figure.

Figure 2-11
Output illustrating WKDAY and MONTH formats
VAR1 VAR2 VAR3 VAR4 VAR5
SUNDAY 1 JANUARY JAN 1
MONDAY 2 FEBRUARY FEB 2
TUESDAY 3 MARCH MAR 3
WEDNESDAY 4 APRIL APR 4
THURSDAY 5 OCTOBER ocT 10
FRIDAY 6 NOVEMBER NOV 11
SATURDAY 7 DECEMBER DEC 12

Example: DTIME and DATETIME

DATA LIST FIXED /VAR1l 1-14 (DTIME) VAR2 18-42 (DATETIME) .

BEGIN DATA

20 8:3 20-6-90 8:3

20:8:03:46 20/JUN/1990 8:03:46

20 08 03 46.75 20 June, 2001 08 03 46.75
END DATA.

LIST.

DTIME and DATETIME read and write time intervals.
The decimal point explicitly coded in the input data for fractional seconds.

The DTIME format allows a — or + sign in the data value to indicate a time interval before or
after a point in time.

®m Internally, values for a DTIME variable are stored as the number of seconds of the time
interval, while those for a DATETIME variable are stored as the number of seconds from 0
hours, 0 minutes, and 0 seconds of Oct. 14, 1582.

47

Universals

The L.IST output from these commands is shown in the following figure.

Figure 2-12
Output illustrating DTIME and DATETIME formats
VAR1 VAR2
20 08:03:00 20-JUN-1990 08:03:00
20 08:03:46 20-JUN-1990 08:03:46
20 08:03:46 20-JUN-2001 08:03:46

FORTRAN-like Input Format Specifications

You can use FORTRAN-like input format specifications to define formats for a set of variables, as
in the following example:

DATA LIST FILE=HUBDATA RECORDS=3
/MOHIRED, YRHIRED, DEPT1 TO DEPT4 (Tl12, 2F2.0, 4(1X,F1.0)).

m The specification T12 in parentheses tabs to the 12th column. The first variable (MOHIRED)
will be read beginning from column 12.

m The specification 2F2 . 0 assigns the format F2 . 0 to two adjacent variables (MOHIRED
and YRHIRED).

® The next four variables (DEPTI to DEPT4) are each assigned the format #1.0. The 4 in
4 (1X,F1.0) distributes the same format to four consecutive variables. 1X skips one column
before each variable. (The column-skipping specification placed within the parentheses is
distributed to each variable.)

Transformation Expressions

Transformation expressions are used in commands such as COMPUTE, IF, DO IF,LOOP IF,
and SELECT TIF.

Numeric Expressions

Numeric expressions can be used with the COMPUTE and IF commands and as part of a logical
expression for commands such as TF, DO IF, LOOP IF,and SELECT IF. Arithmetic expressions
can also appear in the index portion of a LOOP command, on the REPEATING DATA command,
and on the PRINT SPACES command.

Arithmetic Operations

The following arithmetic operators are available:

+ Addition

Subtraction
*

Multiplication

48

Universals

*%

Division

Exponentiation

No two operators can appear consecutively.

Arithmetic operators cannot be implied. For example, (VAR1) (VAR2) is not a legal
specification; you must specify VAR1*VAR2.

Arithmetic operators and parentheses serve as delimiters. To improve readability, blanks (not
commas) can be inserted before and after an operator.

To form complex expressions, you can use variables, constants, and functions with arithmetic
operators.

The order of execution is as follows: functions; exponentiation; multiplication, division,
and unary —; and addition and subtraction.

Operators at the same level are executed from left to right.

To override the order of operation, use parentheses. Execution begins with the innermost set
of parentheses and progresses out.

Numeric Constants

Constants used in numeric expressions or as arguments to functions can be integer or
noninteger, depending on the application or function.

You can specify as many digits in a constant as needed as long as you understand the precision
restrictions of your computer.

Numeric constants can be signed (+ or —) but cannot contain any other special characters,
such as the comma or dollar sign.

Numeric constants can be expressed with scientific notation. Thus, the exponent for a
constant in scientific notation is limited to two digits. The range of values allowed for
exponents in scientific notation is from —99 to +99.

Complex Numeric Arguments

Except where explicitly restricted, complex expressions can be formed by nesting functions
and arithmetic operators as arguments to functions.

The order of execution for complex numeric arguments is as follows: functions;
exponentiation; multiplication, division, and unary —; and addition and subtraction.

To control the order of execution in complex numeric arguments, use parentheses.

Arithmetic Operations with Date and Time Variables

Most date and time variables are stored internally as the number of seconds from a particular date
or as a time interval and therefore can be used in arithmetic operations. Many operations involving
dates and time can be accomplished with the extensive collection of date and time functions.

B A date is a floating-point number representing the number of seconds from midnight, October

14, 1582. Dates, which represent a particular point in time, are stored as the number of
seconds to that date. For example, November 8, 1957, is stored as 1.2E+10.

49

Universals

m A date includes the time of day, which is the time interval past midnight. When time of day
is not given, it is taken as 00:00 and the date is an even multiple of 86,400 (the number
of seconds in a day).

B A time interval is a floating-point number representing the number of seconds in a time
period, for example, an hour, minute, or day. For example, the value representing 5.5 days is
475,200; the value representing the time interval 14:08:17 is 50,897.

B QYR, MOYR, and WKYR variables are stored as midnight of the first day of the respective quarter,
month, and week of the year. Therefore, / O 90, 1/90, and I WK 90 are all equivalents
of January 1, 1990 0:0:00.

WKDAY variables are stored as 1 to 7 and MONTH variables as 1 to 12.

Both dates and time intervals can be used in arithmetic expressions. The results are stored
as the number of seconds or days.

B Do not mix time variables (TIME and DTIME) with date variables (DATE, ADATE, EDATE, etc.)
in computations. Since date variables have an implicit time value of 00:00:00, calculations
involving time values that are not multiples of a whole day (for example, 24 hours, 0 minutes,
0 seconds) will yield unreliable results.

® Mixing a DATETIME variable with a date variable may yield an unreliable result. Operations
involving date variables are accurate only to the days. To avoid possible misinterpretation,
use the DTIME format and ignore the hours and minutes portion of the resulting value.

You can perform virtually any arithmetic operation with them. Of course, not all of these
operations are particularly useful. You can calculate the number of days between two dates by
subtracting one date from the other—but adding two dates does not produce a very meaningful
result.

By default, any new numeric variables that you compute are displayed in F format. In the case
of calculations involving time and date variables, this means that the default output is expressed
as a number of seconds or days. Use the FORMATS (or PRINT FORMATS) command to specify an
appropriate format for the computed variable.

Example

DATA LIST FREE /Datel Date2 (2ADATE1O0).

BEGIN DATA

6/20/2006 10/28/2006

END DATA.

COMPUTE DateDiffl=(Date2-Datel)/60/60/24.
COMPUTE DateDiff2=DATEDIFF (Date2,Datel, "days").
COMPUTE FutureDatel=Date2+ (10*60*60*24) .

COMPUTE FutureDate2=DATESUM (Date2, 10, "days").
FORMATS FutureDatel FutureDate2 (ADATE1O0).

B The first two COMPUTE commands both calculate the number of days between two dates. In
the first one, Date2-Datel yields the number of seconds between the two dates, which is
then converted to the number of days by dividing by number of seconds in a minute, number
of minutes in an hour, and number of hours in a day. In the second one, the DATEDIFF
function is used to obtain the equivalent result, but instead of an arithmetic formula to
produce a result expressed in days, it simply includes the argument "days".

50

Universals

m The second pair of COMPUTE commands both calculate a date 10 days from Date?2. In the
first one, 10 days needs to be converted to the number of seconds in ten days before it can
be added to Date2. In the second one, the "days" argument in the DATESUM function
handles that conversion.

® The FORMATS command is used to display the results of the second two COMPUTE commands
as dates, since the default format is F, which would display the results as the number of
seconds since October 14, 1582.

For more information on date and time functions, see Date and Time Functions on p. 64.

Conditional Statements and Case Selection Based on Dates

To specify a date as a value in a conditional statement, use one of the data aggregation functions
to express the date value. For example,

this works

SELECT IF datevar >= date.mdy(3,1,2006).

the following do not work,

SELECT IF datevar >= 3/1/2006. /*this will select dates >= 0.0015.
SELECT IF datevar >= "3/1/2006" /*this will generate an error.

For more information, see Aggregation Functions on p. 64.

Domain Errors

Domain errors occur when numeric expressions are mathematically undefined or cannot be
represented numerically on the computer for reasons other than missing data. Two common
examples are division by 0 and the square root of a negative number. When SPSS detects
a domain error, it issues a warning and assigns the system-missing value to the expression.
For example, the command COMPUTE TESTVAR = TRUNC (SQRT(X/Y) * .5) returns
system-missing if X/Y is negative or if Y is 0.

The following are domain errors in numeric expressions:

** A negative number to a noninteger power.

/ A divisor of 0.

MOD A divisor of 0.

SQRT A negative argument.

EXP An argument that produces a result too large to be represented on the computer.
LG10 A negative or 0 argument.

LN A negative or 0 argument.

ARSIN An argument whose absolute value exceeds 1.

NORMAL A negative or 0 argument.

PROBIT A negative or 0 argument, or an argument 1 or greater.

51

Universals
Numeric Functions

Numeric functions can be used in any numeric expression on IF, SELECT IF, DO IF, ELSE
IF, LOOP IF, END LOOP IF, and COMPUTE commands. Numeric functions always return
numbers (or the system-missing value whenever the result is indeterminate). The expression to
be transformed by a function is called the argument. Most functions have a variable or a list
of variables as arguments.

B In numeric functions with two or more arguments, each argument must be separated by a
comma. Blanks alone cannot be used to separate variable names, expressions, or constants in
transformation expressions.

B Arguments should be enclosed in parentheses, as in TRUNC (INCOME) , where the TRUNC
function returns the integer portion of the variable INCOME.

B Multiple arguments should be separated by commas, as in MEAN (Q1, 02, Q3), where the
MEAN function returns the mean of variables O/, 02, and Q3.

Example

COMPUTE Square_Root = SQRT(var4).

COMPUTE Remainder = MOD(var4, 3).

COMPUTE Average = MEAN.3 (varl, var2, var3, vard).
COMPUTE Trunc_Mean = TRUNC (MEAN (varl TO vard)).

B SQRT (var4) returns the square root of the value of var4 for each case.

MOD (var4, 3) returns the remainder (modulus) from dividing the value of var4 by 3.

MEAN.3 (varl, var2, var3, var4) returns the mean of the four specified variables,
provided that at least three of them have nonmissing values. The divisor for the calculation of
the mean is the number of nonmissing values.

B TRUNC (MEAN (varl TO var4)) computes the mean of the values for the inclusive range of
variables and then truncates the result. Since no minimum number of nonmissing values is
specified for the function, a mean will be calculated (and truncated) as long as at least one of
the variables has a nonmissing value for that case.

Arithmetic Functions

m All arithmetic functions except MOD have single arguments; MOD has two. The arguments to
MOD must be separated by a comma.

B Arguments can be numeric expressions, as in RND (A**2/B).
ABS. ABS(numexpr). Numeric. Returns the absolute value of numexpr, which must be numeric.

RND. RND(numexpr). Numeric. Returns the integer that results from rounding the absolute value
of numexpr, which must be numeric, and then reaffixing the sign. Numbers ending in .5 exactly
are rounded away from 0. For example, RND(-4.5) rounds to -5.

TRUNC. TRUNC(numexpr). Numeric. Returns the value of numexpr truncated to an integer
(toward 0).

MOD. MOD(numexpr,modulus). Numeric. Returns the remainder when numexpr is divided by
modulus. Both arguments must be numeric, and modulus must not be 0.

52

Universals

SORT. SQRT(numexpr). Numeric. Returns the positive square root of numexpr, which must be
numeric and not negative.

EXP. EXP(numexpr). Numeric. Returns e raised to the power numexpr, where ¢ is the base of the
natural logarithms and numexpr is numeric. Large values of numexpr may produce results that
exceed the capacity of the machine.

LG10. LG10(numexpr). Numeric. Returns the base-10 logarithm of numexpr, which must be
numeric and greater than 0.

LN. LN(numexpr). Numeric. Returns the base-e logarithm of numexpr, which must be numeric
and greater than 0.

LNGAMMA. LNGAMMA (numexpr). Numeric. Returns the logarithm of the complete Gamma
function of numexpr, which must be numeric and greater than 0.

ARSIN. ARSIN(numexpr). Numeric. Returns the inverse sine (arcsine), in radians, of numexpr,
which must evaluate to a numeric value between -1 and +1.

ARTAN. ARTAN(numexpr). Numeric. Returns the inverse tangent (arctangent), in radians, of
numexpr, which must be numeric.

SIN. SIN(radians). Numeric. Returns the sine of radians, which must be a numeric value,
measured in radians.

C0S. COS(radians). Numeric. Returns the cosine of radians, which must be a numeric value,
measured in radians.

Statistical Functions

m Each argument to a statistical function (expression, variable name, or constant) must be
separated by a comma.

® The .n suffix can be used with all statistical functions to specify the number of valid
arguments. For example, MEAN.2 (A, B, C, D) returns the mean of the valid values for
variables A4, B, C, and D only if at least two of the variables have valid values. The default
for n is 2 for SD, VARIANCE, and CFVAR and 1 for other statistical functions. If the number
specified exceeds the number of arguments in the function, the result is system-missing.

m The keyword TO can be used to refer to a set of variables in the argument list.

SUM. SUM(numexpr,numexpr],..]). Numeric. Returns the sum of its arguments that have valid,
nonmissing values. This function requires two or more arguments, which must be numeric. You
can specify a minimum number of valid arguments for this function to be evaluated.

MEAN. MEAN(numexpr,numexpr[,..]). Numeric. Returns the arithmetic mean of its arguments
that have valid, nonmissing values. This function requires two or more arguments, which must be
numeric. You can specify a minimum number of valid arguments for this function to be evaluated.

SD. SD(numexpr,numexpi[,..]). Numeric. Returns the standard deviation of its arguments that
have valid, nonmissing values. This function requires two or more arguments, which must be
numeric. You can specify a minimum number of valid arguments for this function to be evaluated.

53

Random

Universals

VARIANCE. VARIANCE(numexpr,numexpt[,..]). Numeric. Returns the variance of its arguments
that have valid values. This function requires two or more arguments, which must be numeric.
You can specify a minimum number of valid arguments for this function to be evaluated.

CFVAR. CFVAR (numexpr,numexpr[,...]). Numeric. Returns the coefficient of variation (the
standard deviation divided by the mean) of its arguments that have valid values. This function
requires two or more arguments, which must be numeric. You can specify a minimum number of
valid arguments for this function to be evaluated.

MIN. MIN(value,value][,..]). Numeric or string. Returns the minimum value of its arguments that
have valid, nonmissing values. This function requires two or more arguments. You can specify a
minimum number of valid arguments for this function to be evaluated.

MAX. MAX(value,value[,..]). Numeric or string. Returns the maximum value of its arguments that
have valid values. This function requires two or more arguments. You can specify a minimum
number of valid arguments for this function to be evaluated.

Example

COMPUTE maxsum=MAX.2 (SUM(varl TO var3), SUM(var4d TO wvar6)).

MAX . 2 will return the maximum of the two sums provided that both sums are nonmissing.

The . 2 refers to the number of nonmissing arguments for the MAX function, which has only
two arguments because each SUM function is considered a single argument.

® The new variable maxsum will be nonmissing if at least one variable specified for each suM
function is nonmissing.

Variable and Distribution Functions

Random variable and distribution function keywords are all of the form prefix.suffix,
where the prefix specifies the function to be applied to the distribution and the suffix specifies
the distribution.

® Random variable and distribution functions take both constants and variables for arguments.

® A function argument, if required, must come first and is denoted by ¢ (quantile) for
cumulative distribution and probability density functions and p (probability) for inverse
distribution functions.

® All random variable and distribution functions must specify distribution parameters, denoted
by a, b, and/or ¢, according to the number required.

All arguments are real numbers.

Restrictions to distribution parameters a, b, and ¢ apply to all functions for that distribution.
Restrictions for the function parameter p or ¢ apply to that particular distribution function.
The program issues a warning and returns system-missing when it encounters an out-of-range
value for an argument.

54

Universals

The following are possible prefixes:

CDF

IDF

PDF

RV

NCDF

NPDF

SIG

Cumulative distribution function. A cumulative distribution function
CDF.d_spec(q,a, ...) returns a probability p that a variate with the specified
distribution (d_spec) falls below ¢ for continuous functions and at or below ¢
for discrete functions.

Inverse distribution function. Inverse distribution functions are not available for
discrete distributions. An inverse distribution function IDF.d_spec(p,a, ...)
returns a value ¢ such that CDF.d_spec (q, a, . . .) =p with the specified
distribution (d_spec).

Probability density function. A probability density function

PDF.d_spec(q,a, . ..) returns the density of the specified distribution (d_spec)
at g for continuous functions and the probability that a random variable with the
specified distribution equals ¢ for discrete functions.

Random number generation function. A random number generation function
RV.d_spec(a, ...) generates an independent observation with the specified
distribution (d_spec).

Noncentral cumulative distribution function. A noncentral distribution function
NCDF.d_spec(q,a,b, ...) returns a probability p that a variate with the
specified noncentral distribution falls below ¢. It is available only for beta,
chi-square, F, and Student’s z.

Noncentral probability density function. A noncentral probability density function
NCDF.d_spec(q,a,b, ...) returns the density of the specified distribution
(d_spec) at g. It is available only for beta, chi-square, F, and Student’s ¢.

Tail probability function. A tail probability function SIG.d_spec(q,a, ...)
returns a probability p that a variate with the specified distribution (d_spec) is
larger than g.

The following are suffixes for continuous distributions:

BETA

BVNOR

CAUCHY

CHISQ

Beta distribution. The beta distribution takes two shape parameters, a and b; both
must be positive. The noncentral beta distribution takes an extra noncentrality
parameter, ¢, which must be greater than or equal to 0. The CDF, IDF, PDF, RV,
NCDF, and NPDF functions are available for this distribution, where both ¢ and

p must be between 0 and 1, inclusive. The beta distribution is used in Bayesian
analyses as a conjugate to the binomial distribution.

Bivariate normal distribution. The bivariate normal distribution takes one
correlation parameter, , which must be between —1 and 1, inclusive. The CDF and
PDF functions are available for this distribution and require two quantiles, g/ and
q2. Two variables with correlation and marginal normal distributions with a mean
of 0 and a standard deviation of 1 have a bivariate normal distribution.

Cauchy distribution. The Cauchy distribution takes one location parameter, a, and
one scale parameter, b; b must be positive. The CDF, IDF, PDF, and RV functions
are available for this distribution, where 0<p<1. The Cauchy distribution is
symmetric about the location parameter, a, and has such slowly decaying tails that
the expectation does not exist. The harmonic mean of variates that have positive
density at 0 is typically distributed as Cauchy.

Chi-square distribution. The chi-square distribution takes one shape parameter, a,
which is the degrees of freedom and must be positive. The noncentral chi-square
distribution takes an extra noncentrality parameter, ¢, which must be greater than or
equal to 0. The CDF, IDF, PDF, RV, NCDF, NPDF, and SIG functions are available
for this distribution, where ¢ >0 and 0 < p<1. Chi-square is a special case of

the gamma distribution and is commonly used to test quadratic forms under the
Gaussian assumption.

55

EXP

GAMMA

HALFNRM

IGAUSS

LAPLACE

LOGISTIC

LNORMAL

NORMAL

PARETO

SMOD

SRANGE

Universals

Exponential distribution. The exponential distribution takes one scale parameter, a,

which can represent the rate of decay and must be positive. The CDF, IDF, PDF, and
RV functions are available, where ¢ >0 and 0 < p<1. The exponential distribution is a
special case of the gamma distribution. A major use of this distribution is life testing.

F distribution. The F distribution takes two shape parameters, a and b, which are
the degrees of freedom and must be positive. The noncentral F distribution takes
an extra noncentrality parameter, ¢, which must be greater than or equal to 0. The
CDF, IDF, IDF, RV.F (a,b), NCDF, NPDF, and SIG functions are available, where ¢
>0 and 0 < p<1. The F distribution is commonly used to test hypotheses under the
Gaussian assumption.

Gamma distribution. The gamma distribution takes one shape parameter, a, and one
scale parameter, b. Both parameters must be positive. The CDF, IDF, PDF, and

RV functions are available, where ¢ >0 and 0 < p<1. The gamma distribution is
commonly used in queuing theory, inventory control, and precipitation processes. If
a is an integer and b=1, it is the Erlang distribution.

Half-normal distribution. The half-normal distribution takes one location parameter,
a, and one scale parameter, b. Parameter » must be positive. The CDF, IDF, PDF,
and RV functions are available, where 0<p<1.

Inverse Gaussian distribution. The inverse Gaussian, or Wald, distribution takes two
parameters, a and b, both of which must be positive. The CDF, IDF, PDF, and RV
functions are available, where ¢ >0 and 0 < p<1. The inverse Gaussian distribution
is commonly used to test hypotheses for model parameter estimates.

Laplace or double exponential distribution. The Laplace distribution takes one
location parameter, a, and one scale parameter, b. Parameter » must be positive.
The CDF, IDF, PDF, and RV functions are available, where 0<p<1. The Laplace
distribution is symmetric about 0 and has exponentially decaying tails on both ends.

Logistic distribution. The logistic distribution takes one location parameter, a, and
one scale parameter, b. Parameter b must be positive. The CDF, IDF, PDF, and

RV functions are available, where 0<p<1. The logistic distribution is a unimodal,
symmetric distribution with tails that are longer than the Gaussian distribution. It is
used to model growth curves.

Lognormal distribution. This distribution takes two parameters, ¢ and b. Both
parameters must be positive. The CDF, IDF, PDF, and RV functions are available,
where ¢ >0 and 0 < p<I. Lognormal is used in the distribution of particle sizes in
aggregates, flood flows, concentrations of air contaminants, and failure time.

Normal distribution. The normal, or Gaussian, distribution takes one location
parameter, a, and one scale parameter, b. Parameter b must be positive.

The CcDF, IDF, PDF, and RV functions are available, where 0<p<1. Three
functions in SPSS releases earlier than 6.0 are special cases of the normal
distribution functions: CDFNORM (arg)=CDF .NORMAL (g, 0, 1), where

arg is ¢; PROBIT (srg) =IDF.NORMAL (p, 0,1), where arg is p; and
NORMAL (arg) =RV.NORMAL (0, b), where arg is b. The normal distribution is
symmetric about the mean and is the most widely used in statistics.

Pareto distribution. The Pareto distribution takes a threshold parameter, @, and a
shape parameter, b. Both parameters must be positive. The CDF, IDF, PDF, and

RV functions are available, where ¢ > a and 0< p<1. Pareto is commonly used in
economics as a model for a density function with a slowly decaying tail.

Studentized maximum modulus distribution. The Studentized maximum modulus
distribution takes parameters a and b, both of which must be greater than or equal
to 1. The cDF and IDF functions are available, where ¢ >0 and 0 < p<I. The
Studentized maximum modulus is commonly used in post hoc multiple comparisons
for GLM and ANOVA.

Studentized range distribution. The Studentized range distribution takes parameters
a and b, both of which must be greater than or equal to 1. The CDF and IDF
functions are available, where ¢ >0 and 0< p<I. The Studentized range is commonly
used in post hoc multiple comparisons for GLM and ANOVA.

56

Universals

UNIFORM

WEIBULL

Student t distribution. The Student ¢ distribution takes one shape parameter, a,
which is the degrees of freedom and must be positive. The noncentral Student ¢
distribution takes an extra noncentrality parameter, . The CDF, IDF, PDF, RV,
NCDF, and NPDF functions are available, where 0<p<1. The Student # distribution
is symmetric about 0 and approaches the Gaussian distribution as a approaches
infinity. The major uses of the Student ¢ distribution are to test hypotheses and
construct confidence intervals for means of data.

Uniform distribution. The uniform distribution takes two parameters, a and b.

The first parameter, ¢, must be less than or equal to the second parameter, b. The
CDF, IDF, PDF, and RV functions are available, where a < ¢ < b and 0< p <1. The
uniform random number function in SPSS releases earlier than 6.0 is a special case:
UNIFORM (arg)=RV.UNIFORM(0,b), where arg is parameter b. Among other
uses, the uniform distribution commonly models the round-off error.

Weibull distribution. The Weibull distribution takes two parameters, a and b, both of
which must be positive. The CDF, IDF, PDF, and RV functions are available, where ¢
>0 and 0 < p<1. The Weibull distribution is commonly used in survival analysis.

The following are suffixes for discrete distributions:

BERNOULLI

BINOM

GEOM

HYPER

NEGBIN

POISSON

Bernoulli distribution. The Bernoulli distribution takes one success probability
parameter, @, which must be between 0 and 1, inclusive. The CDF, PDF, and
RV functions are available, where g equals 0 or 1. The Bernoulli distribution is
a special case of the binomial distribution and is used in simple success-failure
experiments.

Binomial distribution. The binomial distribution takes one number of trials
parameter, @, and one success probability parameter, b. Parameter a must be a
positive integer and parameter » must be between 0 and 1, inclusive. The CDF,
PDF, and RV functions are available, where ¢ is the number of successes in a
trials. When a=1, it is the Bernoulli distribution. The binomial distribution is
used in independently replicated success-failure experiments.

Geometric distribution. The geometric distribution takes one success probability
parameter, a, which must be greater than 0 and less than or equal to 1. The CDF,
PDF, and RV functions are available, where ¢ is the number of trials needed
(including the last trial) before a success is observed.

Hypergeometric distribution. The hypergeometric distribution takes three
parameters, a, b, and ¢, where « is the total number of objects in an urn model,
b is the number of objects randomly drawn without replacement from the urn,
and c is the number of objects with distinct characteristics. All three parameters
are positive integers, and both b and ¢ must be less than or equal to a. The CDF,
PDF, and RV functions are available, where ¢ is the number of objects with these
distinct characteristics observed out of the withdrawn objects.

Negative binomial distribution. The negative binomial distribution takes one
threshold parameter, a, and one success probability parameter, b. Parameter a
must be an integer and parameter b must be greater than 0 and less than or equal
to 1. The CcDF, PDF, and RV functions are available, where ¢ is the number of
trials needed (including the last trial) before a successes are observed. If a=1,

it is a geometric distribution.

Poisson distribution. The Poisson distribution takes one rate or mean parameter,
a. Parameter a must be positive. The CDF, PDF, and RV functions are available,
where ¢ is a nonnegative integer. The Poisson distribution is used in modeling
the distribution of counts, such as traffic counts and insect counts.

57

Universals

Probability Density Functions

The following functions give the value of the density function with the specified distribution at
the value quant, the first argument. Subsequent arguments are the parameters of the distribution.
Note the period in each function name.

PDE.BERNOULLI. PDF.BERNOULLI(quant, prob). Numeric. Returns the probability that a value
from the Bernoulli distribution, with the given probability parameter, will be equal to quant.

PDE.BETA. PDF.BETA(quant, shapel, shape2). Numeric. Returns the probability density of the
beta distribution, with the given shape parameters, at quant.

PDE.BINOM. PDF.BINOM(quant, n, prob). Numeric. Returns the probability that the number of
successes in n trials, with probability prob of success in each, will be equal to quant. When n
is 1, this is the same as PDF.BERNOULLI.

PDEBVNOR. PDF.BVNOR(quantl, quant2, corr). Numeric. Returns the probability density of the
standard bivariate normal distribution, with the given correlation parameter, at quantl, quant2.

PDFE.CAUCHY. PDF.CAUCHY (quant, loc, scale). Numeric. Returns the probability density of the
Cauchy distribution, with the given location and scale parameters, at quant.

PDFE.CHISQ. PDF.CHISQ(quant, df). Numeric. Returns the probability density of the chi-square
distribution, with df degrees of freedom, at quant.

PDE.EXP. PDF.EXP(quant, shape). Numeric. Returns the probability density of the exponential
distribution, with the given shape parameter, at quant.

PDEF. PDF.F(quant, df1, df2). Numeric. Returns the probability density of the F distribution,
with degrees of freedom dfl and df2, at quant.

PDE.GAMMA. PDF.GAMMA (quant, shape, scale). Numeric. Returns the probability density of the
gamma distribution, with the given shape and scale parameters, at quant.

PDE.GEOM. PDF.GEOM(quant, prob). Numeric. Returns the probability that the number of trials
to obtain a success, when the probability of success is given by prob, will be equal to quant.

PDE.HALFNRM. PDF.HALFNRM(quant, mean, stddev). Numeric. Returns the probability density
of the half normal distribution, with specified mean and standard deviation, at quant.

PDEHYPER. PDF.HYPER(quant, total, sample, hits). Numeric. Returns the probability that the
number of objects with a specified characteristic, when sample objects are randomly selected
from a universe of size total in which hits have the specified characteristic, will be equal to quant.

PDEIGAUSS. PDF.IGAUSS(quant, loc, scale). Numeric. Returns the probability density of the
inverse Gaussian distribution, with the given location and scale parameters, at quant.

PDELAPLACE. PDF.LAPLACE(quant, mean, scale). Numeric. Returns the probability density of
the Laplace distribution, with the specified mean and scale parameters, at quant.

58

Universals

PDELOGISTIC. PDF.LOGISTIC(quant, mean, scale). Numeric. Returns the probability density of
the logistic distribution, with the specified mean and scale parameters, at quant.

PDELNORMAL. PDF.LNORMAL(quant, a, b). Numeric. Returns the probability density of the
log-normal distribution, with the specified parameters, at quant.

PDENEGBIN. PDE.NEGBIN(quant, thresh, prob). Numeric. Returns the probability that the
number of trials to obtain a success, when the threshold parameter is thresh and the probability of
success is given by prob, will be equal to quant.

PDENORMAL. PDF.NORMAL(quant, mean, stddev). Numeric. Returns the probability density of
the normal distribution, with specified mean and standard deviation, at quant.

PDFE.PARETO0. PDF.PARETO(quant, threshold, shape). Numeric. Returns the probability density of
the Pareto distribution, with the specified threshold and shape parameters, at quant.

PDFE.POISSON. PDF.POISSON(quant, mean). Numeric. Returns the probability that a value from
the Poisson distribution, with the specified mean or rate parameter, will be equal to quant.

PDET. PDF.T(quant, df). Numeric. Returns the probability density of Student’s t distribution, with
the specified degrees of freedom df, at quant.

PDE.UNIFORM. PDF.UNIFORM(quant, min, max). Numeric. Returns the probability density of
the uniform distribution, with the specified minimum and maximum, at quant.

PDEWEIBULL. PDF.WEIBULL(quant, a, b). Numeric. Returns the probability density of the
Weibull distribution, with the specified parameters, at quant.

NPDF.BETA. NPDF.BETA(quant, shapel, shape2, nc). Numeric. Returns the probability density of
the noncentral beta distribution, with the given shape and noncentrality parameters, at quant.

NPDF.CHISQ. NPDF.CHISQ(quant, df, nc). Numeric. Returns the probability density of the
noncentral chi-square distribution, with df degrees of freedom and the specified noncentrality
parameter, at quant.

NPDFEF. NPDF.F(quant, df1, df2, nc). Numeric. Returns the probability density of the noncentral F
distribution, with degrees of freedom dfl and df2 and noncentrality nc, at quant.

NPDET. NPDF.T(quant, df, nc). Numeric. Returns the probability density of the noncentral
Student’s t distribution, with the specified degrees of freedom df and noncentrality nc, at quant.

Tail Probability Functions

The following functions give the probability that a random variable with the specified distribution
will be greater than guant, the first argument. Subsequent arguments are the parameters of the
distribution. Note the period in each function name.

SIG.CHISQ. SIG.CHISQ(quant, df). Numeric. Returns the cumulative probability that a value from
the chi-square distribution, with df degrees of freedom, will be greater than quant

59

Universals

SIG.F. These significance values should not be used to test hypotheses about the F values in
this table. Cluster analysis specifically attempts to maximize between-group variance, and the
significance values reported here do not reflect this.

Cumulative Distribution Functions

The following functions give the probability that a random variable with the specified distribution
will be less than quant, the first argument. Subsequent arguments are the parameters of the
distribution. Note the period in each function name.

CDE.BERNOULLI. CDF.BERNOULLI(quant, prob). Numeric. Returns the cumulative probability
that a value from the Bernoulli distribution, with the given probability parameter, will be less
than or equal to quant.

CDE.BETA. CDF.BETA(quant, shapel, shape2). Numeric. Returns the cumulative probability that
a value from the Beta distribution, with the given shape parameters, will be less than quant.

CDE.BINOM. CDF.BINOM(quant, n, prob). Numeric. Returns the cumulative probability that the
number of successes in n trials, with probability prob of success in each, will be less than or equal
to quant. When n is 1, this is the same as CDF.BERNOULLI.

CDE.BVNOR. CDF.BVNOR(quantl, quant2, corr). Numeric. Returns the cumulative probability
that a value from the standard bivariate normal distribution, with the given correlation parameter,
will be less than quantl and quant2.

CDFE.CAUCHY. CDF.CAUCHY (quant, loc, scale). Numeric. Returns the cumulative probability
that a value from the Cauchy distribution, with the given location and scale parameters, will be
less than quant.

CDF.CHISQ. CDF.CHISQ(quant, df). Numeric. Returns the cumulative probability that a value
from the chi-square distribution, with df degrees of freedom, will be less than quant.

CDE.EXP. CDF.EXP(quant, scale). Numeric. Returns the cumulative probability that a value from
the exponential distribution, with the given scale parameter, will be less than quant.

CDEF. CDF.F(quant, df1, df2). Numeric. Returns the cumulative probability that a value from the
F distribution, with degrees of freedom df1 and df2, will be less than quant.

CDE.GAMMA. CDF.GAMMA(quant, shape, scale). Numeric. Returns the cumulative probability
that a value from the Gamma distribution, with the given shape and scale parameters, will be
less than quant.

CDE.GEOM. CDF.GEOM(quant, prob). Numeric. Returns the cumulative probability that the
number of trials to obtain a success, when the probability of success is given by prob, will be
less than or equal to quant.

CDE.HALFNRM. CDF.HALFNRM(quant, mean, stddev). Numeric. Returns the cumulative
probability that a value from the half normal distribution, with specified mean and standard
deviation, will be less than quant.

60

Universals

CDEHYPER. CDF.HYPER(quant, total, sample, hits). Numeric. Returns the cumulative probability
that the number of objects with a specified characteristic, when sample objects are randomly
selected from a universe of size total in which hits have the specified characteristic, will be

less than or equal to quant.

CDFIGAUSS. CDF.IGAUSS(quant, loc, scale). Numeric. Returns the cumulative probability that a
value from the inverse Gaussian distribution, with the given location and scale parameters,
will be less than quant.

CDELAPLACE. CDF.LAPLACE(quant, mean, scale). Numeric. Returns the cumulative probability
that a value from the Laplace distribution, with the specified mean and scale parameters, will be
less than quant.

CDE.LOGISTIC. CDF.LOGISTIC(quant, mean, scale). Numeric. Returns the cumulative probability
that a value from the logistic distribution, with the specified mean and scale parameters, will be
less than quant.

CDELNORMAL. CDF.LNORMAL(quant, a, b). Numeric. Returns the cumulative probability that a
value from the log-normal distribution, with the specified parameters, will be less than quant.

CDENEGBIN. CDE.NEGBIN(quant, thresh, prob). Numeric. Returns the cumulative probability
that the number of trials to obtain a success, when the threshold parameter is thresh and the
probability of success is given by prob, will be less than or equal to quant.

CDFNORM. CDFNORM(zvalue). Numeric. Returns the probability that a random variable with
mean 0 and standard deviation 1 would be less than zvalue, which must be numeric.

CDENORMAL. CDF.NORMAL(quant, mean, stddev). Numeric. Returns the cumulative
probability that a value from the normal distribution, with specified mean and standard deviation,
will be less than quant.

CDFE.PARETO0. CDF.PARETO(quant, threshold, shape). Numeric. Returns the cumulative
probability that a value from the Pareto distribution, with the specified threshold and shape
parameters, will be less than quant.

CDE.POISSON. CDF.POISSON(quant, mean). Numeric. Returns the cumulative probability that
a value from the Poisson distribution, with the specified mean or rate parameter, will be less
than or equal to quant.

CDFESMOD. CDF.SMOD(quant, a, b). Numeric. Returns the cumulative probability that a value
from the Studentized maximum modulus, with the specified parameters, will be less than quant.

CDE.SRANGE. CDF.SRANGE(quant, a, b). Numeric. Returns the cumulative probability that a
value from the Studentized range statistic, with the specified parameters, will be less than quant.

CDET. CDF.T(quant, df). Numeric. Returns the cumulative probability that a value from Student’s
t distribution, with the specified degrees of freedom df, will be less than quant.

61

Universals

CDEUNIFORM. CDF.UNIFORM(quant, min, max). Numeric. Returns the cumulative probability
that a value from the uniform distribution, with the specified minimum and maximum, will be
less than quant.

CDEWEIBULL. CDF.WEIBULL(quant, a, b). Numeric. Returns the cumulative probability that a
value from the Weibull distribution, with the specified parameters, will be less than quant.

NCDF.BETA. NCDF.BETA(quant, shapel, shape2, nc). Numeric. Returns the cumulative
probability that a value from the noncentral Beta distribution, with the given shape and
noncentrality parameters, will be less than quant.

NCDF.CHISQ. NCDF.CHISQ(quant, df, nc). Numeric. Returns the cumulative probability that a
value from the noncentral chi-square distribution, with df degrees of freedom and the specified
noncentrality parameter, will be less than quant.

NCDFF. NCDF.F(quant, dfl, df2, nc). Numeric. Returns the cumulative probability that a value
from the noncentral F distribution, with degrees of freedom dfl and df2, and noncentrality nc,
will be less than quant.

NCDFET. NCDF.T(quant, df, nc). Numeric. Returns the cumulative probability that a value from
the noncentral Student’s t distribution, with the specified degrees of freedom df and noncentrality
nc, will be less than quant.

Inverse Distribution Functions

The following functions give the value in a specified distribution having a cumulative probability
equal to prob, the first argument. Subsequent arguments are the parameters of the distribution.
Note the period in each function name.

IDE.BETA. IDF.BETA(prob, shapel, shape2). Numeric. Returns the value from the Beta
distribution, with the given shape parameters, for which the cumulative probability is prob.

IDE.CAUCHY. IDF.CAUCHY (prob, loc, scale). Numeric. Returns the value from the Cauchy
distribution, with the given location and scale parameters, for which the cumulative probability is
prob.

IDE.CHISQ. IDF.CHISQ(prob, df). Numeric. Returns the value from the chi-square distribution,
with the specified degrees of freedom df, for which the cumulative probability is prob. For
example, the chi-square value that is significant at the 0.05 level with 3 degrees of freedom is
IDF.CHISQ(0.95.3).

IDEEXP. IDF.EXP(p, scale). Numeric. Returns the value of an exponentially decaying variable,
with rate of decay scale, for which the cumulative probability is p.

IDEE. IDF.F(prob, df1, df2). Numeric. Returns the value from the F distribution, with the specified
degrees of freedom, for which the cumulative probability is prob. For example, the F value that is
significant at the 0.05 level with 3 and 100 degrees of freedom is IDF.F(0.95,3,100).

62

Universals

IDEGAMMA. IDF.GAMMA (prob, shape, scale). Numeric. Returns the value from the Gamma
distribution, with the specified shape and scale parameters, for which the cumulative probability
is prob.

IDEHALFNRM. IDF.HALFNRM(prob, mean, stddev). Numeric. Returns the value from the half
normal distribution, with the specified mean and standard deviation, for which the cumulative
probability is prob.

IDEIGAUSS. IDF.IGAUSS(prob, loc, scale). Numeric. Returns the value from the inverse
Gaussian distribution, with the given location and scale parameters, for which the cumulative
probability is prob.

IDELAPLACE. IDF.LAPLACE(prob, mean, scale). Numeric. Returns the value from the Laplace
distribution, with the specified mean and scale parameters, for which the cumulative probability is
prob.

IDELOGISTIC. IDF.LOGISTIC(prob, mean, scale). Numeric. Returns the value from the logistic
distribution, with specified mean and scale parameters, for which the cumulative probability is
prob.

IDELNORMAL. IDF.LNORMAL(prob, a, b). Numeric. Returns the value from the log-normal
distribution, with specified parameters, for which the cumulative probability is prob.

IDENORMAL. IDFE.NORMAL (prob, mean, stddev). Numeric. Returns the value from the normal
distribution, with specified mean and standard deviation, for which the cumulative probability is
prob.

IDEPARETO. IDF.PARETO(prob, threshold, shape). Numeric. Returns the value from the Pareto
distribution, with specified threshold and scale parameters, for which the cumulative probability
is prob.

IDESMOD. IDF.SMOD(prob, a, b). Numeric. Returns the value from the Studentized maximum
modulus, with the specified parameters, for which the cumulative probability is prob.

IDESRANGE. IDF.SRANGE(prob, a, b). Numeric. Returns the value from the Studentized range
statistic, with the specified parameters, for which the cumulative probability is prob.

IDET. IDF.T(prob, df). Numeric. Returns the value from Student’s t distribution, with specified
degrees of freedom df, for which the cumulative probability is prob.

IDEUNIFORM. IDF.UNIFORM(prob, min, max). Numeric. Returns the value from the uniform
distribution between min and max for which the cumulative probability is prob.

IDEWEIBULL. IDF.WEIBULL(prob, a, b). Numeric. Returns the value from the Weibull
distribution, with specified parameters, for which the cumulative probability is prob.

PROBIT. PROBIT(prob). Numeric. Returns the value in a standard normal distribution having
a cumulative probability equal to prob. The argument prob is a probability greater than 0 and
less than 1.

63

Universals

Random Variable Functions

The following functions give a random variate from a specified distribution. The arguments
are the parameters of the distribution. You can repeat the sequence of pseudorandom numbers
by setting a seed in the Preferences dialog box before each sequence. Note the period in each
function name.

NORMAL. NORMAL(stddev). Numeric. Returns a normally distributed pseudorandom number
from a distribution with mean 0 and standard deviation stddev, which must be a positive number.
You can repeat the sequence of pseudorandom numbers by setting a seed in the Random Number
Seed dialog box before each sequence.

RV.BERNOULLI. RV.BERNOULLI(prob). Numeric. Returns a random value from a Bernoulli
distribution with the specified probability parameter prob.

RV.BETA. RV.BETA(shapel, shape2). Numeric. Returns a random value from a Beta distribution
with specified shape parameters.

RV.BINOM. RV.BINOM(n, prob). Numeric. Returns a random value from a binomial distribution
with specified number of trials and probability parameter.

RV.CAUCHY. RV.CAUCHY (loc, scale). Numeric. Returns a random value from a Cauchy
distribution with specified location and scale parameters.

RV.CHISQ. RV.CHISQ(df). Numeric. Returns a random value from a chi-square distribution
with specified degrees of freedom df.

RV.EXP. RV.EXP(scale). Numeric. Returns a random value from an exponential distribution with
specified scale parameter.

RV.F. RV.F(df1, df2). Numeric. Returns a random value from an F distribution with specified
degrees of freedom, df1 and df2.

RV.GAMMA. RV.GAMMA ((shape, scale). Numeric. Returns a random value from a Gamma
distribution with specified shape and scale parameters.

RV.GEOM. RV.GEOM(prob). Numeric. Returns a random value from a geometric distribution
with specified probability parameter.

RV.HALFNRM. RV.HALFNRM(mean, stddev). Numeric. Returns a random value from a half
normal distribution with the specified mean and standard deviation.

RV.HYPER. RV.HYPER(total, sample, hits). Numeric. Returns a random value from a
hypergeometric distribution with specified parameters.

RV.IGAUSS. RVIGAUSS(loc, scale). Numeric. Returns a random value from an inverse Gaussian
distribution with the specified location and scale parameters.

RV.LAPLACE. RV.LAPLACE(mean, scale). Numeric. Returns a random value from a Laplace
distribution with specified mean and scale parameters.

64

Universals

RV.LOGISTIC. RV.LOGISTIC(mean, scale). Numeric. Returns a random value from a logistic
distribution with specified mean and scale parameters.

RV.LNORMAL. RV.LNORMAL(a, b). Numeric. Returns a random value from a log-normal
distribution with specified parameters.

RV.NEGBIN. RV.NEGBIN(threshold, prob). Numeric. Returns a random value from a negative
binomial distribution with specified threshold and probability parameters.

RV.NORMAL. RV.NORMAL (mean, stddev). Numeric. Returns a random value from a normal
distribution with specified mean and standard deviation.

RV.PARETO0. RV.PARETO(threshold, shape). Numeric. Returns a random value from a Pareto
distribution with specified threshold and shape parameters.

RV.POISSON. RV.POISSON(mean). Numeric. Returns a random value from a Poisson distribution
with specified mean/rate parameter.

RV.T. RV.T(df). Numeric. Returns a random value from a Student’s t distribution with specified
degrees of freedom df.

RV.UNIFORM. RV.UNIFORM(min, max). Numeric. Returns a random value from a uniform
distribution with specified minimum and maximum. See also the UNIFORM function.

WEIBULL. RV.WEIBULL(a, b). Numeric. Returns a random value from a Weibull distribution
with specified parameters.

UNIFORM. UNIFORM(max). Numeric. Returns a uniformly distributed pseudorandom number
between 0 and the argument max, which must be numeric (but can be negative). You can repeat
the sequence of pseudorandom numbers by setting the same Random Number Seed (available in
the Transform menu) before each sequence.

Date and Time Functions

Date and time functions provide aggregation, conversion, and extraction routines for dates and
time intervals. Each function transforms an expression consisting of one or more arguments.
Arguments can be complex expressions, variable names, or constants. Date and time expressions
and variables are legitimate arguments.

Aggregation Functions

Aggregation functions generate date and time intervals from values that were not read by date and
time input formats.
m All aggregation functions begin with DATE or TIME, depending on whether a date or a time

interval is requested. This is followed by a subfunction that corresponds to the type of
values found in the data.

65

Universals

m The subfunctions are separated from the function by a period (.) and are followed by an
argument list specified in parentheses.

® The arguments to the DATE and TIME functions must be separated by commas and must
resolve to integer values.

® Functions that contain a day argument—for example, DATE .DMY (d, m, y) —check the
validity of the argument. The value for day must be an integer between 1 and 31. If an
invalid value is encountered, a warning is displayed and the value is set to system-missing.
However, if the day value is invalid for a particular month—for example, 31 in September,
April, June, and November or 29 through 31 for February in nonleap years—the resulting
date is placed in the next month. For example DATE.DMY (31, 9, 2006) returns the date
value for October 1, 2006.

DATE.DMY. DATE.DMY (day,month,year). Numeric. Returns a date value corresponding to the
indicated day, month, and year. The arguments must resolve to integers, with day between 1 and
31, month between 1 and 13, and year a four-digit integer greater than 1582. To display the result
as a date, assign a date format to the result variable.

DATE.MDY. DATE.MDY (month,day,year). Numeric. Returns a date value corresponding to the
indicated month, day, and year. The arguments must resolve to integers, with day between 1 and
31, month between 1 and 13, and year a four-digit integer greater than 1582. To display the result
as a date, assign a date format to the result variable.

DATE.MOYR. DATE.MOYR(month,year). Numeric. Returns a date value corresponding to the
indicated month and year. The arguments must resolve to integers, with month between 1 and
13, and year a four-digit integer greater than 1582. To display the result as a date, assign a date
format to the result variable.

DATE.QYR. DATE.QYR(quarter,year). Numeric. Returns a date value corresponding to the
indicated quarter and year. The arguments must resolve to integers, with quarter between 1
and 4, and year a four-digit integer greater than 1582. To display the result as a date, assign a
date format to the result variable.

DATE.WKYR. DATE.WKYR(weeknum,year). Numeric. Returns a date value corresponding to the
indicated weeknum and year. The arguments must resolve to integers, with weeknum between 1
and 52, and year a four-digit integer greater than 1582. To display the result as a date, assign a
date format to the result variable.

DATE.YRDAY. DATE.YRDAY (year,daynum). Numeric. Returns a date value corresponding to
the indicated year and daynum. The arguments must resolve to integers, with daynum between
1 and 366 and with year being a four-digit integer greater than 1582. To display the result as a
date, assign a date format to the result variable.

TIME.DAYS. TIME.DAY S(days). Numeric. Returns a time interval corresponding to the indicated
number of days. The argument must be numeric. To display the result as a time, assign a time
format to the result variable.

TIME.HMS. TIME.HMS(hours,minutes,seconds). Numeric . Returns a time interval corresponding
to the indicated number of hours, minutes, and seconds. Hours must resolve to an integer, and
minutes must resolve to an integer less than 60. Seconds can contain decimals but must resolve to

66

Universals

a number less than 60. All arguments must resolve to either all positive or all negative values. To
display the result as a time, assign a time format to the result variable.

Example

DATA LIST FREE
/Year Month Day Hour Minute Second Days.
BEGIN DATA
2006 10 28 23 54 30 1.5
END DATA.
COMPUTE Datel=DATE.DMY (Day, Month, Year).
COMPUTE Date2=DATE.MDY (Month, Day, Year).
COMPUTE MonthYear=DATE.MOYR (Month, Year).
COMPUTE Time=TIME.HMS (Hour, Minute, Second).
COMPUTE Duration=TIME.DAYS (Days) .
LIST VARIABLES=Datel to Duration.
FORMATS
Datel (DATEll) Date2 (ADATE10) MonthYear (MOYRS8)
Time (TIME8) Duration (Time8).
LIST VARIABLES=Datel to Duration.

1,IST Results Before Applying Formats
Datel Date?2 MonthYear Time Duration
13381372800 13381372800 13379040000 86070 129600

1,IST Results After Applying Formats
Datel Date2 MonthYear Time Duration
28-0CT-2006 10/28/2006 OCT 2006 23:54:30 36:00:00

m Since dates and times are stored internally as a number of seconds, prior to applying the
appropriate date or time formats, all the computed values are displayed as numbers that
indicate the respective number of seconds.

® The internal values for Datel and Date? are exactly the same. The only difference between
DATE.DMY and DATE . MDY is the order of the arguments.

Date and Time Conversion Functions

The conversion functions convert time intervals from one unit of time to another. Time intervals
are stored as the number of seconds in the interval; the conversion functions provide a means for
calculating more appropriate units, for example, converting seconds to days.

Each conversion function consists of the CTIME function followed by a period (.), the target
time unit, and an argument. The argument can consist of expressions, variable names, or
constants. The argument must already be a time interval. For more information, see Aggregation
Functions on p. 64. Time conversions produce noninteger results with a default format of F8. 2.

Since time and dates are stored internally as seconds, a function that converts to seconds is
not necessary.

CTIME.DAYS. CTIME.DAY S(timevalue). Numeric. Returns the number of days, including
fractional days, in timevalue, which is a number of seconds, a time expression, or a time format
variable.

CTIME.HOURS. CTIME.HOURS(timevalue). Numeric. Returns the number of hours, including
fractional hours, in timevalue, which is a number of seconds, a time expression, or a time
format variable.

67

Universals

CTIME.MINUTES. CTIME.MINUTES(timevalue). Numeric. Returns the number of minutes,
including fractional minutes, in timevalue, which is a number of seconds, a time expression,
or a time format variable.

CTIME.SECONDS. CTIME.SECONDS(timevalue). Numeric. Returns the number of seconds,
including fractional seconds, in timevalue, which is a number, a time expression, or a time
format variable.

Example

DATA LIST FREE (", ")
/StartDate (ADATE12) EndDate (ADATE12)
StartDateTime (DATETIME20) EndDateTime (DATETIME20)
StartTime (TIME10) EndTime (TIME1O0).

BEGIN DATA

3/01/2003, 4/10/2003

01-MAR-2003 12:00, 02-MAR-2003 12:00

09:30, 10:15

END DATA.

COMPUTE days = CTIME.DAYS (EndDate-StartDate) .

COMPUTE hours = CTIME.HOURS (EndDateTime-StartDateTime) .

COMPUTE minutes = CTIME.MINUTES (EndTime-StartTime) .

B CTIME.DAYS calculates the difference between EndDate and StartDate in days—in this
example, 40 days.

B CTIME.HOURS calculates the difference between EndDateTime and StartDateTime in
hours—in this example, 24 hours.

B CTIME.MINUTES calculates the difference between EndTime and StartTime in minutes—in
this example, 45 minutes.

YRMODA Function
YRMODA (arg list) Convert year, month, and day to a day number. The number returned
is the number of days since October 14, 1582 (day 0 of the Gregorian
calendar).

B Arguments for YRMODA can be variables, constants, or any other type of numeric expression
but must yield integers.

Year, month, and day must be specified in that order.
The first argument can be any year between 0 and 99, or between 1582 to 47516.
If the first argument yields a number between 00 and 99, 1900 through 1999 is assumed.

The month can range from 1 through 13. Month 13 with day 0 yields the last day of the year.
For example, YRMODA (1990, 13, 0) produces the day number for December 31, 1990.
Month 13 with any other day yields the day of the first month of the coming year—for
example, YRMODA (1990, 13, 1) produces the day number for January 1, 1991.

® The day can range from O through 31. Day 0 is the last day of the previous month regardless
of whether it is 28, 29, 30, or 31. For example, YRMODA (1990, 3, 0) yields 148791.00, the
day number for February 28, 1990.

68

Universals

® The function returns the system-missing value if any of the three arguments is missing or if
the arguments do not form a valid date after October 14, 1582.

® Since YRMODA yields the number of days instead of seconds, you can not display it in date
format unless you convert it to the number of seconds.

Extraction Functions

The extraction functions extract subfields from dates or time intervals, targeting the day or a
time from a date value. This permits you to classify events by day of the week, season, shift,
and so forth.

Each extraction function begins with XDATE, followed by a period, the subfunction name
(what you want to extract), and an argument.

XDATE.DATE. XDATE.DATE(datevalue). Numeric. Returns the date portion from a numeric value
that represents a date. The argument can be a number, a date format variable, or an expression
that resolves to a date. To display the result as a date, apply a date format to the variable.

XDATE.HOUR. XDATE.HOUR(datetime). Numeric. Returns the hour (an integer between 0 and
23) from a value that represents a time or a datetime. The argument can be a number, a time or
datetime variable or an expression that resolves to a time or datetime value.

XDATE.JDAY. XDATE.JDAY (datevalue). Numeric. Returns the day of the year (an integer
between 1 and 366) from a numeric value that represents a date. The argument can be a number, a
date format variable, or an expression that resolves to a date.

XDATE.MDAY. XDATE.MDAY (datevalue). Numeric. Returns the day of the month (an integer
between 1 and 31) from a numeric value that represents a date. The argument can be a number, a
date format variable, or an expression that resolves to a date.

XDATE.MINUTE. XDATE.MINUTE(datetime). Numeric. Returns the minute (an integer between 0
and 59) from a value that represents a time or a datetime. The argument can be a number, a time
or datetime variable, or an expression that resolves to a time or datetime value.

XDATE.MONTH. XDATE.MONTH(datevalue). Numeric. Returns the month (an integer between 1
and 12) from a numeric value that represents a date. The argument can be a number, a date format
variable, or an expression that resolves to a date.

XDATE.QUARTER. XDATE.QUARTER(datevalue). Numeric. Returns the quarter of the year (an
integer between 1 and 4) from a numeric value that represents a date. The argument can be a
number, a date format variable, or an expression that resolves to a date.

XDATE.SECOND. XDATE.SECOND(datetime). Numeric. Returns the second (a number between 0
and 60) from a value that represents a time or a datetime. The argument can be a number, a time
or datetime variable or an expression that resolves to a time or datetime value.

XDATE.TDAY. XDATE.TDAY (timevalue). Numeric. Returns the number of whole days (as an
integer) from a numeric value that represents a time interval. The argument can be a number, a
time format variable, or an expression that resolves to a time interval.

69

Universals

XDATE.TIME. XDATE.TIME(datetime). Numeric. Returns the time portion from a value that
represents a time or a datetime. The argument can be a number, a time or datetime variable or
an expression that resolves to a time or datetime value. To display the result as a time, apply a
time format to the variable.

XDATE.WEEK. XDATE.WEEK (datevalue). Numeric. Returns the week number (an integer
between 1 and 53) from a numeric value that represents a date. The argument can be a number, a
date format variable, or an expression that resolves to a date.

XDATE.WKDAY. XDATE.WKDAY (datevalue). Numeric. Returns the day-of-week number (an
integer between 1, Sunday, and 7, Saturday) from a numeric value that represents a date. The
argument can be a number, a date format variable, or an expression that resolves to a date.

XDATE.YEAR. XDATE.YEAR(datevalue). Numeric. Returns the year (as a four-digit integer) from
a numeric value that represents a date. The argument can be a number, a date format variable, or
an expression that resolves to a date.

Example

DATA LIST FREE (", ")

/StartDateTime (datetime25).
BEGIN DATA
29-0CT-2003 11:23:02
1 January 1998 1:45:01
21/6/2000 2:55:13
END DATA.
COMPUTE dateonly=XDATE.DATE (StartDateTime) .
FORMATS dateonly (ADATE10) .
COMPUTE hour=XDATE.HOUR (StartDateTime) .
COMPUTE DayofWeek=XDATE.WKDAY (StartDateTime) .
COMPUTE WeekofYear=XDATE.WEEK (StartDateTime) .
COMPUTE quarter=XDATE.QUARTER (StartDateTime) .

m The date portion extracted with XDATE . DATE returns a date expressed in seconds; so,
FORMATS is used to display the date in a readable date format.

Day of the week is an integer between 1 (Sunday) and 7 (Saturday).
Week of the year is an integer between 1 and 53 (January 1-7 = 1).

Date Differences

The DATEDIFF function calculates the difference between two date values and returns an integer
(with any fraction component truncated) in the specified date/time units. The general form of
the expression is

DATEDIFF (datetime2, datetimel, “unit”).

where datetime? and datetimel are both date or time format variables (or numeric values that
represent valid date/time values), and “unit” is one of the following string literal values, enclosed
in quotes:

m Years

m Quarters

70

Universals

Months
Weeks
Days
Hours

Minutes

Seconds

Example

DATA LIST FREE /datel date2 (2ADATE10).

BEGIN DATA

1/1/2004 2/1/2005

1/1/2004 2/15/2005

1/30/2004 1/29/2005

END DATA.

COMPUTE vears=DATEDIFF (date2, datel, "years").

m The result will be the integer portion of the number of years between the two dates, with any
fractional component truncated.

B One “year” is defined as the same month and day, one year before or after the second date
argument.

m For the first two cases, the result is 1, since in both cases the number of years is greater
than or equal to 1 and less than 2.

m For the third case, the result is 0, since the difference is one day short of a year based on
the definition of year.

Example

DATA LIST FREE /datel date2 (2ADATE10).

BEGIN DATA

1/1/2004 2/1/2004

1/1/2004 2/15/2004

1/30/2004 2/1/2004

END DATA.

COMPUTE months=DATEDIFF (date2, datel, "months").

® The result will be the integer portion of the number of months between the two dates, with
any fractional component truncated.

B One “month” is defined as the same day of the month, one calendar month before or after
the second date argument.

m For the first two cases, the result will be 1, since both February 1 and February 15, 2004, are
greater than or equal to one month and less than two months after January 1, 2004.

® For the third case, the result will be 0. By definition, any date in February 2004 will be less
than one month after January 30, 2004, resulting in a value of 0.

71

Universals

Date Increments

The DATESUM function calculates a date or time value a specified number of units from a given
date or time value. The general form of the function is:

DATESUM (datevar, value, "unit", "method").

B datevar is a date/time format variable (or a numeric value that represents a valid date/time
value).

B value is a positive or negative number. For variable-length units (years, quarters, months),
fractional values are truncated to integers.

B "unit" is one of the following string literal values enclosed in quotes: years, quarters,
months, weeks, days, hours, minutes, seconds.

B "method" is an optional specification for variable-length units (years, quarters, months)
enclosed in quotes. The method can be "rollover" or "closest". The rollover method
advances excess days into the next month. The closest method uses the closest legitimate
date within the month. This is the default.

Example

DATA LIST FREE /datevarl (ADATELOQ).
BEGIN DATA

2/28/2004

2/29/2004

END DATA.

COMPUTE rollover_year=DATESUM (datevarl, 1, "years", "rollover").
COMPUTE closest_year=DATESUM (datevarl, 1, "years", "closest").

COMPUTE fraction_year=DATESUM (datevarl, 1.5, "years").
FORMATS rollover_vyear closest_year fraction_year (ADATE1O0).
SUMMARIZE

/TABLES=datevarl rollover_year closest_year fraction_year

/FORMAT=VALIDLIST NOCASENUM

/CELLS=NONE.

Figure 2-13
Results of rollover and closest year calculations

datevart rollover_year | clogest year | fraction_yesr
02/28/2004 02/28/2005 02/28/2005 032812005
02i29/2004 03401,/2005 02i28/2003 052972005
02i2a/2004 02i28/2003 02i28/2003 O528/2005
02/29,2004 03401,/2005 02/28/2005 03£29/2005

ECNE N S

m The rollover and closest methods yield the same result when incrementing February 28, 2004,
by one year: February 28, 2005.

m Using the rollover method, incrementing February 29, 2004, by one year returns a value
of March 1, 2005. Since there is no February 29, 2005, the excess day is rolled over to
the next month.

m Using the closest method, incrementing February 29, 2004, by one year returns a value of
February 28, 2005, which is the closest day in the same month of the following year.

m The results for fraction year are exactly the same as for closest_year because the closest
method is used by default, and the value parameter of 1.5 is truncated to 1 for variable-length
units.

72

Universals

m All three COMPUTE commands create new variables that display values in the default F
format, which for a date value is a large integer. The FORMATS command specifies the ADATE
format for the new variables.

Example

DATA LIST FREE /datevarl (ADATELO).
BEGIN DATA

01/31/2003
01/31/2004
03/31/2004
05/31/2004
END DATA.
COMPUTE rollover_month=DATESUM (datevarl, 1, "months", "rollover").
COMPUTE closest_month=DATESUM (datevarl, 1, "months", "closest").
COMPUTE previous_month_rollover =
DATESUM (datevarl, -1, "months", "rollover").
COMPUTE previous_month_closest =
DATESUM (datevarl, -1, "months", "closest").

FORMATS rollover _month closest_month
previous_month_rollover previous_month_closest (ADATELO0).
SUMMARIZE
/TABLES=datevarl rollover_month closest_month
previous_month_rollover previous_month_closest
/FORMAT=VALIDLIST NOCASENUM
/CELLS=NONE.

Figure 2-14
Results of month calculations
previous_ preyious_
datevar] rollover_month closest_month month_rollover month_clozest

1 01/3142003 0303/2003 02/28/2003 1203112002 12#31/2002
2 0173152004 03272004 0272952004 12031 120035 1273172003
3 03#31/2004 05401 /2004 04/30:2004 030272004 024292004
4 05/31/2004 074012004 08302004 05401 /2004 04/30,2004

m Using the rollover method, incrementing by one month from January 31 yields a date in
March, since February has a maximum of 29 days; and incrementing one month from
March 31 and May 31 yields May 1 and July 1, respectively, since April and June each
have only 30 days.

m Using the closest method, incrementing by one month from the last day of any month will
always yield the last day of the next month.

m Using the rollover method, decrementing by one month (by specifying a negative value
parameter) from the last day of a month may sometimes yield unexpected results, since the
excess days are rolled back to the original month. For example, one month prior to March 31
yields March 3 for nonleap years and March 2 for leap years.

m Using the closest method, decrementing by one month from the last day of the month will
always yield the last day of the previous month.

String Expressions

Expressions involving string variables can be used on COMPUTE and IF commands and in logical
expressions on commands such as IF, DO IF, LOOP IF, and SELECT IF.

73

Universals

B A string expression can be a constant enclosed in apostrophes (for example, *IL "), a string
function, or a string variable. For more information, see String Functions on p. 73.

B An expression must return a string if the target variable is a string.

m The string returned by a string expression does not have to be the same length as the target
variable; no warning messages are issued if the lengths are not the same. If the target variable
produced by a COMPUTE command is shorter, the result is right-trimmed. If the target variable
is longer, the result is right-padded.

String Functions

m The target variable for each string function must be a string and must have already been
declared (see STRING).

B Multiple arguments in a list must be separated by commas.

B When two strings are compared, the case in which they are entered is significant. The LOWER
and UPCASE functions are useful for making comparisons of strings regardless of case.

m For certain functions (for example, MIN, MAX, ANY, and RANGE), the outcome will be
affected by case and by whether the string includes numbers or special characters. The
character set in use varies by system. With the ASCII character set, lower case follows upper
case in the sort order. Therefore, if NAME1 is in upper case and NAME? is in lower case,
MIN (NAME1,NAME2) will return NAME] as the minimum. The reverse is true with the
EBCDIC character set, which sorts lower case before upper case.

CONCAT. CONCAT (strexpr,strexpr][,..]). String. Returns a string that is the concatenation of all
its arguments, which must evaluate to strings. This function requires two or more arguments.
If strexpr is a string variable, use RTRIM if you only want the actual string value without

the right-padding to the defined variable width. For example, CONCAT(RTRIM(stringvar1),
RTRIM(stringvar2)).

INDEX. INDEX(haystack,needle[,divisor]). Numeric. Returns a number that indicates the position
of the first occurrence of needle in haystack. The optional third argument, divisor, is a number of
characters used to divide needle into separate strings. Each substring is used for searching and the
function returns the first occurrence of any of the substrings. For example, INDEX(varl, *abcd’)
will return the value of the starting position of the complete string "abcd" in the string variable
varl; INDEX(varl, ’abed’, 1) will return the value of the position of the first occurrence of any of
the values in the string; and INDEX(var1, *abed’, 2) will return the value of the first occurrence of
either "ab" or "cd". Divisor must be a positive integer and must divide evenly into the length

of needle. Returns 0 if needle does not occur within haystack.

LENGTH. LENGTH(strexpr). Numeric. Returns the length of strexpr, which must be a string
expression. For string variables, this is the defined length, including trailing blanks. To get the
length without trailing blanks, use LENGTH(RTRIM(strexpr)). For example, LENGTH(lname)
always returns 6 if Iname has an A6 format, while LENGTH(RTRIM(Iname)) returns the actual
length of the string for each case.

LOWER. LOWER(strexpr). String. Returns strexpr with uppercase letters changed to lowercase
and other characters unchanged. The argument can be a string variable or a value. For example,
LOWER(namel) returns charles if the value of namel is Charles.

74

Universals

LPAD. LPAD(strexprl,length[,strexpr2]). String. Left-pads strexprl to make its length the value
specified by length using the optional string strexpr2 as the padding string. The value of length
must be a positive integer. If the optional argument strexpr2 is omitted, the value is padded
with blank spaces.

LTRIM. LTRIM(strexpr[,char]). String. Returns strexpr with any leading instances of char
removed. If char is not specified, leading blanks are removed. Char must resolve to a single
character.

MAX. MAX(value,value[,..]). Numeric or string. Returns the maximum value of its arguments that
have valid values. This function requires two or more arguments. You can specify a minimum
number of valid arguments for this function to be evaluated.

MIN. MIN(value,value][,..]). Numeric or string. Returns the minimum value of its arguments that
have valid, nonmissing values. This function requires two or more arguments. You can specify a
minimum number of valid arguments for this function to be evaluated.

MBLEN.BYTE. MBLEN.BY TE(strexpr,pos). Numeric. Returns the number of bytes in the
character at byte position pos of strexpr.

REPLACE. REPLACE(al, a2, a3[, a4]). String. In al, instances of a2 are replaced with a3.
The optional argument a4 specifies the number of occurrences to replace; if a4 is omitted,

all occurrences are replaced. Arguments al, a2, and a3 must resolve to string values (literal
strings enclosed in quotes or string variables), and the optional argument a4 must resolve to a
non-negative integer. For example, REPLACE("abcabc", "a", "x") returns a value of "xbcxbc"
and REPLACE("abcabc", "a", "x", 1) returns a value of "xbcabc".

RINDEX. RINDEX(haystack,needle[,divisor]). Numeric. Returns an integer that indicates the
starting position of the last occurrence of the string needle in the string haystack. The optional
third argument, divisor, is the number of characters used to divide needle into separate strings.
For example, RINDEX(varl, ’abcd’) will return the starting position of the last occurrence of
the entire string "abcd" in the variable varl; RINDEX(varl, *abed’, 1) will return the value of
the position of the last occurrence of any of the values in the string; and RINDEX(varl1, *abed’,
2) will return the value of the starting position of the last occurrence of either "ab" or "cd".
Divisor must be a positive integer and must divide evenly into the length of needle. If needle is
not found, the value 0 is returned.

RPAD. RPAD(strexprl,length[,strexpr2]). String. Right-pads strexprl with strexpr2 to extend it
to the length given by length, which must be a positive integer. The optional third argument
strexpr2 is a quoted string or an expression that resolves to a string. If strepxr2 is omitted, the
value is padded with blanks.

RTRIM. RTRIM(strexpr|,char]). String. Trims trailing instances of char within strexpr. The
optional second argument char is a single quoted character or an expression that yields a single
character. If char is omitted, trailing blanks are trimmed.

SUBSTR. SUBSTR(strexpr,pos[,length]). String. Returns the substring beginning at position pos
of strexpr and running for length length. If the optional argument length is omitted, returns

the substring beginning at position pos of strexpr and running to the end of strexpr. For
example SUBSTR(’abed’, 2) returns bed’ and SUBSTR(’abed’, 2, 2) returns ’be’. When
used on the left side of an equals sign, the substring is replaced by the string specified on

the right side of the equals sign. The rest of the original string remains intact. For example,

75

Universals

SUBSTR (ALPHAG6,3,1)="*" changes the third character of all values for ALPHAG6 to *. If the
replacement string is longer or shorter than the substring, the replacement is truncated or padded
with blanks on the right to an equal length.

UPCASE. UPCASE(strexpr). String. Returns strexpr with lowercase letters changed to uppercase
and other characters unchanged.

Example

STRING stringVarl stringVar2 stringVar3 (A22).
COMPUTE stringVarl=' Does this'.
COMPUTE stringVar2='ting work?'.
COMPUTE stringVar3=
CONCAT (RTRIM (LTRIM(stringVarl)), " ",
REPLACE (stringVar2, "ting", "thing")).

m The CONCAT function concatenates the values of stringVarl and stringVar2, inserting a space
as a literal string (" ") between them.

B The RTRIM function strips off trailing blanks from stringVarl. Since all string variable values
are automatically right-padded to the defined width of the string variables, this is necessary to
eliminate excessive space between the two concatenated string values.

B The LTRIM function removes the leading spaces from the beginning of the value of stringVari.

® The REPLACE function replaces the misspelled "ting" with "thing" in stringlar?2.

The final result is a string value of “Does this thing work?”

Example

This example extracts the numeric components from a string telephone number into three numeric
variables.

DATA LIST FREE (",") /telephone (Al6).
BEGIN DATA

111-222-3333

222 - 333 - 4444

333-444-5555

444 - 555-6666

555-666-0707

END DATA.

STRING #telstr (Al6).

COMPUTE #telstr = telephone.

VECTOR tel(3,£f4).

LOOP #i = 1 to 2.

- COMPUTE #dash = INDEX (#telstr,"-").

- COMPUTE tel (#i NUMBER (SUBSTR (#telstr, 1, #dash-1),£10) .
- COMPUTE #telstr SUBSTR (#telstr, #dash+1) .
END LOOP.

COMPUTE tel(3) = NUMBER (#telstr,f10).
EXECUTE.

FORMATS tell tel2 (N3) tel3 (N4).

B A temporary (scratch) string variable, #telstr, is declared and set to the value of the original
string telephone number.

76

Universals

B The VECTOR command creates three numeric variables—tell, tel2, and tel3—and creates a
vector containing those variables.

® The LOOP structure iterates twice to produce the values for te// and tel2.

B COMPUTE #dash = INDEX (#telstr,"-") creates another temporary variable, #dash,
that contains the position of the first dash in the string value.

B On the first iteration, COMPUTE tel (#i) =
NUMBER (SUBSTR (#telstr, 1, #dash-1),£10) extracts everything
prior to the first dash, converts it to a number, and sets zel// to that value.

B COMPUTE #telstr = SUBSTR(#telstr, #dash+1) then sets #telstr to the remaining
portion of the string value after the first dash.

B On the second iteration, COMPUTE #dash. .. sets #dash to the position of the “first” dash
in the modified value of #felstr. Since the area code and the original first dash have been
removed from #telstr, this is the position of the dash between the exchange and the number.

B COMPUTE tel (#)... sets fel2 to the numeric value of everything up to the “first” dash in

the modified version of #telstr, which is everything after the first dash and before the second

dash in the original string value.

B COMPUTE #telstr... then sets #felstr to the remaining segment of the string
value—everything after the “first” dash in the modified value, which is everything after the
second dash in the original value.

m After the two loop iterations are complete, COMPUTE tel (3) = NUMBER (#telstr, £10)
sets tel3 to the numeric value of the final segment of the original string value.

String/Numeric Conversion Functions

NUMBER. NUMBER (strexpr,format). Numeric. Returns the value of the string expression strexpr

as a number. The second argument, format, is the numeric format used to read strexpr. For

example, NUMBER(stringDate,DATE11) converts strings containing dates of the general format
dd-mmm-yyyy to a numeric number of seconds that represent that date. (To display the value as a

date, use the FORMATS or PRINT FORMATS command.) If the string cannot be read using the
format, this function returns system-missing.

STRING. STRING(numexpr,format). String. Returns the string that results when numexpr is
converted to a string according to format. STRING(-1.5,F5.2) returns the string value ’-1.50".
The second argument format must be a format for writing a numeric value.

Example

DATA LIST FREE /tell tel2 tel3.
BEGIN DATA
123 456 0708
END DATA.
STRING telephone (Al2).
COMPUTE telephone=
CONCAT (STRING(tell,N3), "-", STRING(tel2, N3), "-", STRING(tel3, N4)).

B A new string variable, telephone, is declared to contain the computed string value.

77

Universals

B The three numeric variables are converted to strings and concatenated with dashes between
the values.

® The numeric values are converted using N format to preserve any leading zeros.

LAG Function

LAG. LAG(variable[, n]). Numeric or string. The value of variable in the previous case or n cases
before. The optional second argument, n, must be a positive integer; the default is 1. For example,
prevd=LAG(gnp,4) returns the value of gnp for the fourth case before the current one. The first
four cases have system-missing values for prev4.

m The result is of the same type (numeric or string) as the variable specified as the first argument.

m The first n cases for string variables are set to blanks. For example, if PREV2=LAG
(LNAME, 2) is specified, blanks will be assigned to the first two cases for PREV2.

® When LAG is used with commands that select cases (for example, SELECT IF and SAMPLE),
LAG counts cases affer case selection, even if specified before these commands. For more
information, see Command Order on p. 21.

Note: In a series of transformation commands without any intervening EXECUTE commands or
other commands that read the data, lag functions are calculated after all other transformations,
regardless of command order. For example,

COMPUTE lagvar=LAG(varl) .
COMPUTE varl=varl*2.

and

COMPUTE lagvar=LAG(varl) .
EXECUTE.
COMPUTE varl=varl*2.

yield very different results for the value of lagvar, since the former uses the transformed value of
varl while the latter uses the original value.

VALUELABEL Function

VALUELABEL. VALUELABEL(varname). String. Returns the value label for the value of variable
or an empty string if there is no label for the value. The argument must be a variable name. The
argument cannot be an expression.

Example

STRING labelvar (Al120).

COMPUTE labelvar=VALUELABEL (varl) .

DO REPEAT varlist=var2, var3, vard
/newvars=1labelvar2, labelvar3, labelvar4.

- STRING newvars (A120) .

- COMPUTE newvars=VALUELABEL (varlist) .

END REPEAT.

78

Universals

Logical Expressions

Logical expressions can appear on the IF, SELECT IF, DO IF,ELSE IF,LOOP IF,and END
LooP IF commands. SPSS evaluates a logical expression as true or false, or as missing if

it is indeterminate. A logical expression returns 1 if the expression is true, 0 if it is false, or
system-missing if it is missing. Thus, logical expressions can be any expressions that yield
this three-value logic.

m The simplest logical expression is a logical variable. A logical variable is any numeric
variable that has the values 1, 0, or system-missing. Logical variables cannot be strings.

m Logical expressions can be simple logical variables or relations, or they can be complex
logical tests involving variables, constants, functions, relational operators, logical operators,
and parentheses to control the order of evaluation.

B On an IF command, a logical expression that is true causes the assignment expression to
be executed. A logical expression that returns missing has the same effect as one that is
false—that is, the assignment expression is not executed and the value of the target variable
is not altered.

B OnaDO IFcommand,a logical expression that is true causes SPSS to execute the commands
immediately following the DO IF, up to the next ELSE IF, ELSE, or END IF. Ifitis false,
SPSS looks for the next ELSE IF or ELSE command. If the logical expression returns
missing for each of these, the entire structure is skipped.

B OnaSELECT IF command, alogical expression that is true causes the case to be selected. A
logical expression that returns missing has the same effect as one that is false—that is, the
case is not selected.

B OnaLoOP IF command, a logical expression that is true causes looping to begin (or
continue). A logical expression that returns missing has the same effect as one that is
false—that is, the structure is skipped.

B Onan END LOOP IF command, alogical expression that is false returns control to the
Loop command for that structure, and looping continues. If it is true, looping stops and the
structure is terminated. A logical expression that returns a missing value has the same effect
as one that is true—that is, the structure is terminated.

Example

DATA LIST FREE (",") /a.

BEGIN DATA

i, , 1, ,

END DATA.

COMPUTE b=a.

* The following does NOT work since the second condition
is never evaluated.

DO IF a=1.

COMPUTE al=1.

ELSE IF MISSING(a) .

COMPUTE al=2.

END IF.

* On the other hand the following works.

DO IF MISSING (b).

COMPUTE bl=2.

ELSE IF b=1.

COMPUTE bl=1.

END IF.

79

Universals

m The first DO IF will never yield a value of 2 for a/ because if a is missing, then DO IF a=1
evaluates as missing and control passes immediately to END IF. So a/ will either be 1
or missing.

m Inthe second DO IF, however, we take care of the missing condition first; so if the value of b
is missing, DO IF MISSING (b) evaluates as true and b/ is set to 2; otherwise, b/ is set to 1.

String Variables in Logical Expressions

String variables, like numeric variables, can be tested in logical expressions.
®m String variables must be declared before they can be used in a string expression.
m String variables cannot be compared to numeric variables.

m [f strings of different lengths are compared, the shorter string is right-padded with blanks to
equal the length of the longer string.

® The magnitude of strings can be compared using LT, GT, and so on, but the outcome depends
on the sorting sequence of the computer. Use with caution.

m User-missing string values are treated the same as nonmissing string values when evaluating
string variables in logical expressions. In other words, all string variable values are treated as
valid, nonmissing values in logical expressions.

Relational Operators

A relation is a logical expression that compares two values using a relational operator. In the
command

IF (X EQ 0) v=1

the variable X and 0 are expressions that yield the values to be compared by the EQ relational
operator. The following are the relational operators:

Symbol Definition

EQor = Equal to

NE or ~=or ~=or <> Not equal to

LT or < Less than

LE or <= Less than or equal to
GT or > Greater than

GE or >= Greater than or equal to

m The expressions in a relation can be variables, constants, or more complicated arithmetic
expressions.

80

Universals

m Blanks (not commas) must be used to separate the relational operator from the expressions.
To make the command more readable, use extra blanks or parentheses.

m For string values, “less than” and “greater than” results can vary by locale even for the same
set of characters, since the national collating sequence is used. Language order, not ASCII
order, determines where certain characters fall in the sequence.

NOT Logical Operator

The NOT logical operator reverses the true/false outcome of the expression that immediately

follows.

|

The NOT operator affects only the expression that immediately follows, unless a more
complex logical expression is enclosed in parentheses.

You can substitute ~ or — for NOT as a logical operator.

NOT can be used to check whether a numeric variable has the value 0, 1, or any other value.
For example, all scratch variables are initialized to 0. Therefore, NOT (#ID) returns false or
missing when #/D has been assigned a value other than 0.

AND and OR Logical Operators

Two or more relations can be logically joined using the logical operators AND and OR. Logical
operators combine relations according to the following rules:

m The ampersand (&) symbol is a valid substitute for the logical operator AND. The vertical bar
(|) is a valid substitute for the logical operator OR.

B Only one logical operator can be used to combine two relations. However, multiple relations
can be combined into a complex logical expression.

m Regardless of the number of relations and logical operators used to build a logical expression,
the result is either true, false, or indeterminate because of missing values.

m Operators or expressions cannot be implied. For example, X EQ 1 OR 2 is illegal; you
must specify X EQ 1 OR X EQ 2.

m The ANY and RANGE functions can be used to simplify complex expressions.

AND Both relations must be true for the complex expression to be true.

OR

If either relation is true, the complex expression is true.

The following table lists the outcomes for AND and OR combinations.

Table 2-3
Logical outcomes

Expression Outcome Expression QOutcome
true AND true = true true OR true = true
true AND false = false true OR false = true
false AND false = false false OR false = false
true AND missing = missing true OR missing = true*

81

Universals
Expression Outcome Expression Outcome
missing AND missing = missing missing OR missing = missing
false AND missing = false* false OR missing = missing

* Expressions where SPSS can evaluate the outcome with incomplete information. For more
information, see Missing Values in Logical Expressions on p. 87.

Example

DATA LIST FREE /varl var2 var3.
BEGIN DATA
111

121
123
4 2 4
END DATA.

SELECT IF varl = 4 OR ((var2 > wvarl) AND (varl <> wvar3)).

B Any case that meets the first condition—varl = 4—will be selected, which in this example
is only the last case.

B Any case that meets the second condition will also be selected. In this example, only the
third case meets this condition, which contains two criteria: var2 is greater than var/ and
varl is not equal to var3.

Order of Evaluation

® When arithmetic operators and functions are used in a logical expression, the order of
operations is functions and arithmetic operations first, then relational operators, and then
logical operators.

® When more than one logical operator is used, NOT is evaluated first, then AND, and then OR.

m To change the order of evaluation, use parentheses.

Logical Functions

m Each argument to a logical function (expression, variable name, or constant) must be
separated by a comma.

m The target variable for a logical function must be numeric.

m The functions RANGE and ANY can be useful shortcuts to more complicated specifications
on the IF, DO IF, and other conditional commands. For example, for non-missing values,
the command

SELECT IF ANY (REGION, "NW","NE","SE") .
is equivalent to

SELECT IF (REGION EQ "NW" OR REGION EQ "NE" OR REGION EQ "SE").

RANGE. RANGE(test,lo,hi[,lo,hi,..]). Logical. Returns 1 or true if test is within any of the inclusive
range(s) defined by the pairs lo, hi. Arguments must be all numeric or all strings of the same
length, and each of the lo, hi pairs must be ordered with lo <= hi. Note: For string values, results

82

Universals

can vary by locale even for the same set of characters, since the national collating sequence is
used. Language order, not ASCII order, determines where certain characters fall in the sequence.

ANY. ANY (test,value[,value,...]). Logical. Returns 1 or true if the value of test matches any of the
subsequent values; returns 0 or false otherwise. This function requires two or more arguments.
For example, ANY (varl, 1, 3, 5) returns 1 if the value of varl is 1, 3, or 5 and 0 for other values.
ANY can also be used to scan a list of variables or expressions for a value. For example, ANY(1,
varl, var2, var3) returns 1 if any of the three specified variables has a value of 1 and 0 if all three
variables have values other than 1.

See Treatment of Missing Values in Arguments for information on how missing values are
handled by the ANY and RANGE functions.

Scoring Expressions (SPSS Server)

Scoring functions are available only if you have access to SPSS Server.
Scoring expressions apply model XML from an external file to the active dataset and generate
predicted values, predicted probabilities, and other values based on that model.

m Scoring expressions must be preceded by a MODEL, HANDLE command that identifies the
external XML model file and optionally does variable mapping.

B Scoring expressions require two arguments: the first identifies the model, and the second
identifies the scoring function. An optional third argument allows users to obtain the
probability (for each case) associated with a selected category, in the case of a categorical
target variable.

m SPSS procedures that can generate model XML include REGRESSION, DISCRIMINANT, and
TWOSTEP CLUSTER, plus some procedures available in some add-on options. See the MODEL
HANDLE command for more information.

B Prior to applying scoring functions to a set of data, a data validation analysis is performed.
The analysis includes checking that data are of the correct type as well as checking that the
data values are in the set of allowed values defined in the model. For example, for categorical
variables, a value that is neither a valid category nor defined as user-missing would be treated
as an invalid value. Values that are found to be invalid are treated as system-missing.

The following scoring expressions are available:

ApplyModel. ApplyModel(handle, "function", category). Numeric. Applies a particular scoring
function to the input case data using the model specified by handle and where "function" is one of
the following string literal values enclosed in quotes: predict, stddev, probability, confidence,
nodeid. The model handle is the name associated with the external XML file, as defined on the
MODEL HANDLE command. The optional category is only valid if the function is "probability",
and must have the same data type as the target variable. It specifies that the probability should

be calculated for a specific category. ApplyModel returns system-missing if a value can not be
computed. String values must be enclosed in quotes. For example, ApplyModel (namel,
‘probability', ‘reject'), where namel is the model’s handle name and ‘reject' isa
valid category for a target variable that is a string.

83

Universals

StrApplyModel. StrApplyModel(handle, "function", category). String. Applies a particular scoring
function to the input case data using the model specified by handle and where "function" is one of
the following string literal values enclosed in quotes: predict, stddev, probability, confidence,
nodeid. The model handle is the name associated with the external XML file, as defined on the
MODEL HANDLE command. The optional category is only valid if the function is "probability",
and must have the same data type as the target variable. It specifies that the probability should

be calculated for a specific category. StrApplyModel returns a blank string if a value cannot be
computed.

The following scoring functions are available:

PREDICT Returns the predicted value of the target variable.
STDDEV Standard deviation.
PROBABILITY Probability associated with a particular category of a target variable.

Applies only to categorical variables. In the absence of the optional third
parameter, category, this is the probability that the predicted category is
the correct one for the target variable. If a particular category is specified,
then this is the probability that the specified category is the correct one
for the target variable.

CONFIDENCE A probability measure associated with the predicted value of a categorical
target variable. Applies only to categorical variables.
NODEID The terminal node number. Applies only to tree models.

The following table lists the set of scoring functions available for each type of model that supports
scoring. The function type denoted as PROBABILITY (category) refers to specification of a
particular category (the optional third parameter) for the PROBABILITY function.

Table 2-4
Supported functions by model type

Model type Supported functions

PREDICT, PROBABILITY, PROBABILITY (category),
CONF IDENCE, NODEID

PREDICT, NODEID

Tree (categorical target)

Tree (scale target)
Boosted Tree (C5.0)

Linear Regression

PREDICT, CONFIDENCE

PREDICT, STDDEV

PREDICT, PROBABILITY, PROBABILITY (category),
CONFIDENCE

Conditional Logistic Regression PREDICT

Binary Logistic Regression

PREDICT, PROBABILITY, PROBABILITY (category),
CONFIDENCE

Multinomial Logistic Regression

General Linear Model

PREDICT, STDDEV

Discriminant

PREDICT, PROBABILITY

TwoStep Cluster

PREDICT

K-Means Cluster

PREDICT, CONFIDENCE

Kohonen PREDICT

NémnTNet@awgoﬁcdtmgeQ PREDICT, PROBABILITY, PROBABILITY (category),
CONFIDENCE

Neural Net (scale target) PREDICT

84

Universals

Model type Supported functions

Naive Bayes PREDICT, PROBABILITY, PROBABILITY (category),
CONFIDENCE

Anomaly Detection PREDICT

Ruleset PREDICT, CONFIDENCE

Generalized Linear Model (categorical PREDICT, PROBABILITY, PROBABILITY (category),

target) CONFIDENCE

Generalized Linear Model (scale target) PREDICT, STDDEV

Ordinal Multinomial Regression PREDICT, PROBABILITY, PROBABILITY (category),
CONFIDENCE

m For the Binary Logistic Regression, Multinomial Logistic Regression, and Naive Bayes
models, the value returned by the CONFIDENCE function is identical to that returned by the
PROBABILITY function.

For the K-Means model, the value returned by the CONFIDENCE function is the least distance.

For tree and ruleset models, the confidence can be interpreted as an adjusted probability of
the predicted category and is always less than the value given by PROBABILITY. For these
models, the confidence value is more reliable than the value given by PROBABILITY.

® For neural network models, the confidence provides a measure of whether the predicted
category is much more likely than the second-best predicted category.

® For Ordinal Multinomial Regression and Generalized Linear Model, the PROBABILITY
function is supported when the target variable is binary.

Missing Values
Functions and simple arithmetic expressions treat missing values in different ways. In the
expression
(varl+var2+var3) /3

the result is missing if a case has a missing value for any of the three variables.

In the expression

MEAN (varl, var2, var3)

the result is missing only if the case has missing values for all three variables.

For statistical functions, you can specify the minimum number of arguments that must have

nonmissing values. To do so, type a period and the minimum number after the function name,
as in:

MEAN.2 (varl, var2, var3)

The following sections contain more information on the treatment of missing values in functions
and transformation expressions, including special missing value functions.

85

Universals

Treatment of Missing Values in Arguments

If the logic of an expression is indeterminate because of missing values, the expression returns a
missing value and the command is not executed. The following table summarizes how missing
values are handled in arguments to various functions.

Table 2-5
Missing values in arguments

Function Returns system-missing if

MOD (x1,x%2) x1 is missing, or x2 is missing and x1 is not 0.
MAX.n (x1,x2,...xk) Fewer than n arguments are valid; the default # is 1.
MEAN.n (x1,x2,...xk)

MIN.n (x1,x2,...x1)

SUM.n (x1,x2,...xk)

CFVAR.n (x1,x2,...xk) Fewer than n arguments are valid; the default # is 2.
SD.n (x1,x2,...xk)

VARIANCE.n (x1,x2,...xk)

LPAD (x1,x2,x3)
LTRIM (x1,x2)
RTRIM (x1,x2)

RPAD (x1,x2,x3)

x1 or x2 is illegal or missing.

SUBSTR (x1,x2,x3)

x2 or x3 is illegal or missing.

NUMBER (x, format)

STRING (x, format)

The conversion is invalid.

INDEX (x1,x2,x3)

RINDEX (x1,x2,x%x3)

x3 is invalid or missing.

LAG (x,n) x 18 missing n cases previously (and always for the first n
cases); the default n is 1.

ANY (x,x1,x2,...xk) For numeric values, if x is missing or all the remaining
arguments are missing, the result is system-missing. For string
values, user-missing value are treated as valid values, and the
result is never missing.

RANGE (x,x1,x2,...xkl,xk2)

For numeric values, the result is system-missing if:
B X is missing, or

B all the ranges defined by the remaining arguments are
missing, or

B any range has a starting value that is higher than the
ending value.

A numeric range is missing if either of the arguments that
define the range is missing. This includes ranges for which
one of the arguments is equal to the value of the first argument
in the expression. For example: RANGE (x, x1, x2) is
missing if any of the arguments is missing, even if x1 or x2

is equal to x.

For string values, user-missing values are treated as valid
values, and the result is only missing if any range has a starting
value that is higher than the ending value.

86

Universals
Function Returns system-missing if
VALUE (x) x is system-missing.
MISSING (x) Never.
NMISS (x1,x2,...xk)
NVALID (x1,x2,...xk)
SYSMIS (x)

B Any function that is not listed in this table returns the system-missing value when the

argument is missing.

® The system-missing value is a displayed as a period (.) for numeric variables.

m String variables do not have system-missing values. An invalid string expression nested

within a complex transformation yields a null string, which is passed to the next level of
operation and treated as missing. However, an invalid string expression that is not nested
is displayed as a blank string and is not treated as missing.

Missing Values in Numeric Expressions

Most numeric expressions receive the system-missing value when any one of the values in
the expression is missing.

® Some arithmetic operations involving 0 can be evaluated even when the variables have

missing values. These operations are:

Expression Result
0 * missing 0
0 / missing 0
MOD (0, missing) 0

COMPUTE FACTOR =

m The .z suffix can be used with the statistical functions SUM, MEAN, MIN, MAX, SD, VARIANCE,

and CFVAR to specify the number of valid arguments that you consider acceptable. The default
of n is 2 for SD, VARIANCE, and CFVAR, and 1 for other statistical functions. For example,

SUM. 2 (SCORE1 TO SCORE3) .

computes the variable FACTOR only if a case has valid information for at least two scores.
FACTOR is assigned the system-missing value if a case has valid values for fewer than two

scores. If the number specified exceeds the number of arguments in the function, the result
is system-missing.

Missing Values in String Expressions
|

If the numeric argument (which can be an expression) for the functions LPAD and RPAD is
illegal or missing, the result is a null string. If the padding or trimming is the only operation,
the string is then padded to its entire length with blanks. If the operation is nested, the null
string is passed to the next nested level.

87

Universals

® [f a numeric argument to SUBSTR is illegal or missing, the result is a null string. If SUBSTR
is the only operation, the string is blank. If the operation is nested, the null string is passed
to the next nested level.

m If a numeric argument to INDEX or RINDEX is illegal or missing, the result is system-missing.

Missing Values in Logical Expressions

In a simple relation, the logic is indeterminate if the expression on either side of the relational
operator is missing. When two or more relations are joined by logical operators AND and OR,
SPSS always returns a missing value if all of the relations in the expression are missing. However,
if any one of the relations can be determined, SPSS tries to return true or false according to the
logical outcomes. For more information, see AND and OR Logical Operators on p. 80.

® When two relations are joined with the AND operator, the logical expression can never be true
if one of the relations is indeterminate. The expression can, however, be false.

m When two relations are joined with the OR operator, the logical expression can never be false
if one relation returns missing. The expression, however, can be true.

Missing Value Functions

m Each argument to a missing-value function (expression, variable name, or constant) must
be separated by a comma.

m With the exception of the MISSING function, only numeric values can be used as arguments
in missing-value functions.

m The keyword TO can be used to refer to a set of variables in the argument list for functions
NMISS and NVALID.

B The functions MISSING and SYSMIS are logical functions and can be useful shortcuts to more
complicated specifications on the IF, DO IF, and other conditional commands.

VALUE. VALUE(variable). Numeric or string. Returns the value of variable, ignoring user
missing-value definitions for variable, which must be a variable name or a vector reference
to a variable name.

MISSING. MISSING(variable). Logical. Returns 1 or true if variable has a system- or user-missing
value. The argument should be a variable name in the active dataset.

SYSMIS. SYSMIS(numvar). Logical. Returns 1 or true if the value of numvar is system-missing.
The argument numvar must be the name of a numeric variable in the active dataset.

NMISS. NMISS(variable[,..]). Numeric. Returns a count of the arguments that have system- and
user-missing values. This function requires one or more arguments, which should be variable
names in the active dataset.

NVALID. NVALID(variable[,..]). Numeric. Returns a count of the arguments that have valid,
nonmissing values. This function requires one or more arguments, which should be variable
names in the active dataset.

2SLS

2SLsS is available in the Regression Models option.

2SLS [EQUATION=]dependent variable WITH predictor variable
[/ [EQUATION=]dependent variable...]
/INSTRUMENTS=varlist
[/ENDOGENOUS=varlist]

[/ {CONSTANT* * }
{NOCONSTANT}

[/PRINT=COV]
[/SAVE = [PRED] [RESID]]

[/APPLY[='model name']]
**Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

2SLS VARO1 WITH VARO02 VARO3
/INSTRUMENTS VARO3 LAGVARO1.

Overview

25Ls performs two-stage least-squares regression to produce consistent estimates of parameters
when one or more predictor variables might be correlated with the disturbance. This situation
typically occurs when your model consists of a system of simultaneous equations wherein
endogenous variables are specified as predictors in one or more of the equations. The
two-stage least-squares technique uses instrumental variables to produce regressors that are not
contemporaneously correlated with the disturbance. Parameters of a single equation or a set

of simultaneous equations can be estimated.

Options

New Variables. You can change NEWVAR settings on the TSET command prior to 2SLS to evaluate
the regression statistics without saving the values of predicted and residual variables, or you can
save the new values to replace the values that were saved earlier, or you can save the new values
without erasing values that were saved earlier (see the TSET command). You can also use the
SAVE subcommand on 2SLS to override the NONE or the default CURRENT settings on NEWVAR.

88

89

2SLS

Covariance Matrix. You can obtain the covariance matrix of the parameter estimates in addition
to all of the other output by specifying PRINT=DETAILED on the TSET command prior to
2SLS. You can also use the PRINT subcommand to obtain the covariance matrix, regardless of
the setting on PRINT.

Basic Specification

The basic specification is at least one EQUATION subcommand and one INSTRUMENTS
subcommand.

m For each specified equation, 2SLS estimates and displays the regression analysis-of-variance
table, regression standard error, mean of the residuals, parameter estimates, standard errors of
the parameter estimates, standardized parameter estimates, ¢ statistic significance tests and
probability levels for the parameter estimates, tolerance of the variables, and correlation
matrix of the parameter estimates.

m [f the setting on NEWVAR is either ALL or the default CURRENT, two new variables containing
the predicted and residual values are automatically created for each equation. The variables
are labeled and added to the active dataset.

Subcommand Order

B Subcommands can be specified in any order.

Syntax Rules

B The INSTRUMENTS subcommand must specify at least as many variables as are specified after
WITH on the longest EQUATTON subcommand.

m [f a subcommand is specified more than once, the effect is cumulative (except for the APPLY
subcommand, which executes only the last occurrence).

Operations
B 23LsS cannot produce forecasts beyond the length of any regressor series.
B 25LS honors the SPSS WEIGHT command.

B 2SLS uses listwise deletion of missing data. Whenever a variable is missing a value for a
particular observation, that observation will not be used in any of the computations.

EQUATION Subcommand

EQUATION specifies the structural equations for the model and is required. The actual keyword
EQUATION is optional.

B An equation specifies a single dependent variable, followed by keyword WITH and one or
more predictor variables.

B You can specify more than one equation. Multiple equations are separated by slashes.

Example

25LS EQUATION=Y1 WITH X1 X2

90

2SLS

/INSTRUMENTS=X1 LAGX2 X3.

®m In this example, Y/ is the dependent variable, and X7 and X2 are the predictors. The
instruments that are used to predict the X2 values are X1, LAGX2, and X3.

INSTRUMENTS Subcommand

INSTRUMENTS specifies the instrumental variables. These variables are used to compute
predicted values for the endogenous variables in the first stage of 2SLS.

B At least one INSTRUMENTS subcommand must be specified.

B [f more than one INSTRUMENTS subcommand is specified, the effect is cumulative. All
variables that are named on INSTRUMENTS subcommands are used as instruments to predict
all the endogenous variables.

Any variable in the active dataset can be named as an instrument.

Instrumental variables can be specified on the EQUATION subcommand, but this specification
is not required.

® The INSTRUMENTS subcommand must name at least as many variables as are specified after
WITH on the longest EQUATION subcommand.

m [f all the predictor variables are listed as the only INSTRUMENTS, the results are the same as
results from ordinary least-squares regression.

Example

2SLS DEMAND WITH PRICE, INCOME
/PRICE WITH DEMAND, RAINFALL, LAGPRICE
/INSTRUMENTS=INCOME, RAINFALL, LAGPRICE.

® The endogenous variables are PRICE and DEMAND.

® The instruments to be used to compute predicted values for the endogenous variables are
INCOME, RAINFALL, and LAGPRICE.

ENDOGENOUS Subcommand

All variables that are not specified on the INSTRUMENTS subcommand are used as endogenous
variables by 251.S. The ENDOGENOUS subcommand simply allows you to document what these
variables are.

m Computations are not affected by specifications on the ENDOGENOUS subcommand.

Example

2SLS Y1 WITH X1 X2 X3
/INSTRUMENTS=X2 X4 LAGYl
/ENDOGENOUS=Y1 X1 X3.

® In this example, the ENDOGENOUS subcommand is specified to document the endogenous
variables.

91

2SLS

CONSTANT and NOCONSTANT Subcommands

Specify CONSTANT or NOCONSTANT to indicate whether a constant term should be estimated in
the regression equation. The specification of either subcommand overrides the CONSTANT setting
on the TSET command for the current procedure.

B CONSTANT is the default and specifies that the constant term is used as an instrument.

B NOCONSTANT eliminates the constant term.

SAVE Subcommand

SAVE saves the values of predicted and residual variables that are generated during the current

session to the end of the active dataset. The default names FI7 n and ERR_n will be generated,
where n increments each time variables are saved for an equation. SAVE overrides the NONE or
the default CURRENT setting on NEWVAR for the current procedure.

PRED Save the predicted value. The new variable is named FIT n, where n increments each
time a predicted or residual variable is saved for an equation.
RESSID Save the residual value. The new variable is named ERR_n, where n increments each

time a predicted or residual variable is saved for an equation.

PRINT Subcommand

PRINT can be used to produce an additional covariance matrix for each equation. The only
specification on this subcommand is keyword cov. The PRINT subcommand overrides the PRINT
setting on the TSET command for the current procedure.

APPLY Subcommand

APPLY allows you to use a previously defined 2SLs model without having to repeat the
specifications.

m The only specification on APPLY is the name of a previous model. If a model name is not
specified, the model that was specified on the previous 2SLS command is used.

m To change the series that are used with the model, enter new series names before or after
the APPLY subcommand.

m To change one or more model specifications, specify the subcommands of only those portions
that you want to change after the APPLY subcommand.

m [f no series are specified on the command, the series that were originally specified with
the model that is being reapplied are used.

Example

28LS Y1 WITH X1 X2 / X1 WITH Y1 X2
/INSTRUMENTS=X2 X3.

2SLS APPLY
/INSTRUMENTS=X2 X3 LAGX1.

92

2SLS

m In this example, the first command requests 2SLS using X2 and X3 as instruments.

m The second command specifies the same equations but changes the instruments to X2, X3,
and LAGXI.

ACF

ACF VARIABLES= series names

[/DIFF={1}]
{n}

[/SDIFF={1}]
{n}

[/PERIOD=n]

[/ {NOLOG**}]
{LN }

[/SEASONAL]

[/MXAUTO={16%**}]
{n }

[/SERROR={IND**}]
{MA }

[/PACF]

[/APPLY [='model name']]

**Default if the subcommand is omitted and there is no corresponding specification on the TSET
command.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

ACF TICKETS.

Overview

ACF displays and plots the sample autocorrelation function of one or more time series. You can
also display and plot the autocorrelations of transformed series by requesting natural log and
differencing transformations within the procedure.

Options

Modifying the Series. You can request a natural log transformation of the series using the LN
subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF and
DIFF subcommands. With seasonal differencing, you can specify the periodicity on the PERIOD
subcommand.

Statistical Qutput. With the MXAUTO subcommand, you can specify the number of lags for
which you want autocorrelations to be displayed and plotted, overriding the maximum specified
on TSET. You can also display and plot values at periodic lags only using the SEASONAL

93

94
ACF

subcommand. In addition to autocorrelations, you can display and plot partial autocorrelations
using the PACF subcommand.

Method of Calculating Standard Errers. You can specify one of two methods of calculating the
standard errors for the autocorrelations on the SERROR subcommand.

Basic Specification

The basic specification is one or more series names.

m For each series specified, ACF automatically displays the autocorrelation value, standard error,
Box-Ljung statistic, and probability for each lag.

B ACF plots the autocorrelations and marks the bounds of two standard errors on the plot. By
default, AcF displays and plots autocorrelations for up to 16 lags or the number of lags
specified on TSET.

m [f a method has not been specified on TSET, the default method of calculating the standard
error (IND) assumes that the process is white noise.

Subcommand Order

® Subcommands can be specified in any order.

Syntax Rules
B VARIABLES can be specified only once.

m Other subcommands can be specified more than once, but only the last specification of each
one is executed.

Operations
® Subcommand specifications apply to all series named on the ACF command.

m [f the LN subcommand is specified, any differencing requested on that ACF command is
done on the log-transformed series.

m Confidence limits are displayed in the plot, marking the bounds of two standard errors at
each lag.

Limitations

B A maximum of one VARIABLES subcommand. There is no limit on the number of series
named on the list.

Example

ACF VARIABLES = TICKETS
/LN
/DIFF=1
/SDIFF=1
/PER=12
/MXAUTO=50.

95
ACF

m This example produces a plot of the autocorrelation function for the series TICKETS after a
natural log transformation, differencing, and seasonal differencing have been applied. Along
with the plot, the autocorrelation value, standard error, Box-Ljung statistic, and probability
are displayed for each lag.

LN transforms the data using the natural logarithm (base e) of the series.
DIFF differences the series once.

SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

MXAUTO specifies that the maximum number of lags for which output is to be produced is 50.

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary series to a stationary
one with a constant mean and variance before the autocorrelations are computed.

B You can specify 0 or any positive integer on DIFF.
m [f DIFF is specified without a value, the default is 1.

® The number of values used in the calculations decreases by 1 for each degree—1 of
differencing.

Example

ACF VARIABLES = SALES
/DIFF=1.

m In this example, the series SALES will be differenced once before the autocorrelations are
computed and plotted.

SDIFF Subcommand

If the series exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference the series before obtaining autocorrelations.

B The specification on SDIFF indicates the degree of seasonal differencing and can be 0 or
any positive integer.

If sDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

The number of seasons used in the calculations decreases by 1 for each degree of seasonal
differencing.

® The length of the period used by SDIFF is specified on the PERTIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERTIOD subcommand).

96

ACF
PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF or SEASONAL subcommands.

m The specification on PERIOD indicates how many observations are in one period or season
and can be any positive integer greater than 1.

® The PERIOD subcommand is ignored if it is used without the SDIFF or SEASONAL
subcommands.

m [f PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SDIFF and SEASONAL subcommands will
not be executed.

Example

ACF VARIABLES = SALES
/SDIFF=1M
/PERIOD=12.

® This command applies one degree of seasonal differencing with a periodicity (season) of 12
to the series SALES before autocorrelations are computed.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base ¢) of the series and is used to remove
varying amplitude over time. NOLOG indicates that the data should not be log transformed.
NOLOG is the default.

m [f you specify LN on an ACF command, any differencing requested on that command will be
done on the log-transformed series.

m There are no additional specifications on LN or NOLOG.
B Only the last LN or NOLOG subcommand on an ACF command is executed.

®m [f a natural log transformation is requested when there are values in the series that are less
than or equal to zero, the ACF will not be produced for that series because nonpositive values
cannot be log transformed.

B NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example

ACF VARIABLES = SALES
/LN.

® This command transforms the series SALES using the natural log transformation and then
computes and plots autocorrelations.

97
ACF

SEASONAL Subcommand

Use the SEASONAL subcommand to focus attention on the seasonal component by displaying and
plotting autocorrelations at periodic lags only.

® There are no additional specifications on SEASONAL.

B [f SEASONAL is specified, values are displayed and plotted at the periodic lags indicated on
the PERTOD subcommand. If PERTOD is not specified, the periodicity established on the TSET
or DATE command is used (see the PERTOD subcommand).

m [f SEASONAL is not specified, autocorrelations for all lags up to the maximum are displayed
and plotted.

Example

ACF VARIABLES = SALES
/ SEASONAL
/PERIOD=12.

m In this example, autocorrelations are displayed only at every 12th lag.

MXAUTO Subcommand

MXAUTO specifies the maximum number of lags for a series.
B The specification on MXAUTO must be a positive integer.

B [f MXAUTO is not specified, the default number of lags is the value set on TSET MxAUTO. If
TSET MXAUTO is not specified, the default is 16.

® The value on MXAUTO overrides the value set on TSET MXAUTO.

Example

ACF VARIABLES = SALES
/MXAUTO=14.

® This command sets the maximum number of autocorrelations to be displayed for the series
SALES to 14.

SERROR Subcommand

SERROR specifies the method of calculating the standard errors for the autocorrelations.
B You must specify either the keyword IND or MA on SERROR.

B The method specified on SERROR overrides the method specified on the TSET ACFSE
command.

98
ACF

m [f SERROR is not specified, the method indicated on TSET ACFSE is used. If TSET ACFSE is
not specified, the default is IND.

IND Independence model. The method of calculating the standard errors assumes that the
underlying process is white noise.

MA MA model. The method of calculating the standard errors is based on Bartlett’s approximation.
With this method, appropriate where the true Ma order of the process is &—1, standard errors
grow at increased lags (Pankratz, 1983).

Example

ACF VARIABLES = SALES
/SERROR=MA.

®m In this example, the standard errors of the autocorrelations are computed using the MA method.

PACF Subcommand

Use the PACF subcommand to display and plot sample partial autocorrelations as well as
autocorrelations for each series named on the ACF command.

m There are no additional specifications on PACF.

B PACF also displays the standard errors of the partial autocorrelations and indicates the bounds
of two standard errors on the plot.

m With the exception of SERROR, all other subcommands specified on that ACF command apply
to both the partial autocorrelations and the autocorrelations.

Example

ACF VARIABLES = SALES
/DIFFERENCE=1
/PACF .

® This command requests both autocorrelations and partial autocorrelations for the series
SALES after it has been differenced once.

APPLY Subcommand

APPLY allows you to use a previously defined ACF model without having to repeat the
specifications.

® The only specification on APPLY is the name of a previous model in quotation marks. If a
model name is not specified, the model specified on the previous ACF command is used.

m To change one or more model specifications, specify the subcommands of only those portions
you want to change after the APPLY subcommand.

m If no series are specified on the ACF command, the series that were originally specified with
the model being reapplied are used.

m To change the series used with the model, enter new series names before or after the APPLY
subcommand.

99

ACF

Example

ACF VARIABLES = TICKETS
/LN
/DIFF=1
/SDIFF=1
/PERIOD=12
/MXAUTO=50.

ACF VARIABLES = ROUNDTRP
/APPLY.

ACF APPLY
/NOLOG.

ACF APPLY 'MOD_2'
/PERIOD=6.

® The first command requests a maximum of 50 autocorrelations for the series TICKETS after
a natural log transformation, differencing, and one degree of seasonal differencing with a
periodicity of 12 have been applied. This model is assigned the default name MOD 1.

® The second command displays and plots the autocorrelation function for the series
ROUNDTRP using the same model that was used for the series 7/CKETS. This model is
assigned the name MOD 2.

B The third command requests another autocorrelation function of the series ROUNDTRP
using the same model but without the natural log transformation. Note that when APPLY is
the first specification after the ACF command, the slash (/) before it is not necessary. This
model is assigned the name MOD 3.

B The fourth command reapplies MOD 2, autocorrelations for the series ROUNDTRP with the
natural log and differencing specifications, but this time with a periodicity of 6. This model is
assigned the name MOD 4. It differs from MOD 2 only in the periodicity.

References
Box, G. E. P,, and G. M. Jenkins. 1976. Time series analysis: Forecasting and control, Rev. ed.
San Francisco: Holden-Day.

Pankratz, A. 1983. Forecasting with univariate Box-Jenkins models: Concepts and cases. New
York: John Wiley and Sons.

ADD DOCUMENT

ADD DOCUMENT
'text!
‘text'.

This command takes effect immediately. It does not read the active dataset or execute pending
transformations. For more information, see Command Order on p. 21.

Example

ADD DOCUMENT
"This data file is a 10% random sample from the"
"master data file. It's seed value is 13254689.".

Overview

ADD DOCUMENT saves a block of text of any length in an SPSS-format data file. The result is
equivalent to the DOCUMENT command. The documentation can be displayed with the DISPLAY
DOCUMENT command.

When GET retrieves a data file, or APPLY DICTIONARY is used to apply documents from
another data file, or ADD FILES, MATCH FILES, or UPDATE is used to combine data files, all
documents from each specified file are copied into the working file. DROP DOCUMENTS can be
used to drop those documents from the working file.

Basic Specification

The basic specification is ADD DOCUMENT followed by one or more optional lines of quoted text.
The text is stored in the file dictionary when the data file is saved in SPSS format.

Syntax Rules

m Each line must be enclosed in single or double quotation marks, following the standard rules
for quoted strings.

m Each line can be up to 80 bytes long (typically 80 characters in single-byte languages),
including the command name but not including the quotation marks used to enclose the text.
If any line exceeds 80 bytes, an error will result and the command will not be executed.

The text can be entered on as many lines as needed.

Multiple ADD DOCUMENT commands can be specified for the same data file.

Operations

® The text from each ADD DOCUMENT command is appended to the end of the list of
documentation, followed by the date in parentheses.

B An ADD DOCUMENT command with no quoted text string appends a date in parentheses to
the documentation.

100

101

ADD DOCUMENT

B DISPLAY DOCUMENTS will display all documentation for the data file specified on the ADD
DOCUMENT and/or DOCUMENT commands. Documentation is displayed exactly as entered;
each line of the ADD DOCUMENT command is displayed as a separate line, and there is no
line wrapping.

B DROP DOCUMENTS deletes all documentation created by both ADD DOCUMENT and
DOCUMENT.

Example

If the command name and the quoted text string are specified on the same line, the command
name counts toward the 80-byte line limit, so it’s a good idea to put the command name on a
separate line, as in:

ADD DOCUMENT
"This is some text that describes this file.".

Example

To insert blank lines between blocks of text, enter a null string, as in:

ADD DOCUMENT
"This is some text that describes this file."

"This is some more text preceded by a blank line.".

ADD FILES

ADD FILES FILE={'savfile'|'dataset'}
* }

[/RENAME= (0ld varnames=new varnames) ...]
[/IN=varname]

/FILE=... [/RENAME=...] [/IN=...]

[/BY varlist]

[/MAP]

[/KEEP={ALL** }] [/DROP=varlist]
{varlist}

[/FIRST=varname] [/LAST=varname]

**Default if the subcommand is omitted.

Example

ADD FILES FILE="c:\data\schooll.sav" /FILE=c:\data\"school2.sav".

Overview

ADD FILES combines cases from 2 up to 50 SPSS-format data files by concatenating or
interleaving cases. When cases are concatenated, all cases from one file are added to the end of
all cases from another file. When cases are interleaved, cases in the resulting file are ordered
according to the values of one or more key variables.

The files specified on ADD FILES can be external SPSS-format data files, the active dataset, or
previously defined datasets. The combined file becomes the new active dataset.

In general, ADD FILES is used to combine files containing the same variables but different
cases. To combine files containing the same cases but different variables, use MATCH FILES. To
update existing SPSS-format data files, use UPDATE.

Options

Variable Selection. You can specify which variables from each input file are included in the new
active dataset using the DROP and XEEP subcommands.

Variable Names. You can rename variables in each input file before combining the files using the
RENAME subcommand. This permits you to combine variables that are the same but whose names
differ in different input files or to separate variables that are different but have the same name.

Variable Flag. You can create a variable that indicates whether a case came from a particular input
file using IN. When interleaving cases, you can use the FIRST or LAST subcommands to create a
variable that flags the first or last case of a group of cases with the same value for the key variable.

102

103

ADD FILES

Variable Map. You can request a map showing all variables in the new active dataset, their order,
and the input files from which they came using the MAP subcommand.

Basic Specification

B The basic specification is two or more FILE subcommands, each of which specifies a file
to be combined. If cases are to be interleaved, the BY subcommand specifying the key
variables is also required.

m All variables from all input files are included in the new active dataset unless DROP or KEEP is
specified.

Subcommand Order

B RENAME and IN must immediately follow the FILE subcommand to which they apply.

B BY, FIRST, and LAST must follow all FILE subcommands and their associated RENAME and
IN subcommands.

Syntax Rules

B RENAME can be repeated after each FILE subcommand. RENAME applies only to variables in
the file named on the FILE subcommand immediately preceding it.

B BY can be specified only once. However, multiple key variables can be specified on BY. When
BY is used, all files must be sorted in ascending order by the key variables (see SORT CASES).
FIRST and LAST can be used only when files are interleaved (when BY is used).

MAP can be repeated as often as desired.

Operations

B ADD FILES reads all input files named on FILE and builds a new active dataset that replaces
any active dataset created earlier in the session. ADD FILES is executed when the data are
read by one of the procedure commands or the EXECUTE, SAVE, or SORT CASES commands.

m The resulting file contains complete dictionary information from the input files, including
variable names, labels, print and write formats, and missing-value indicators. It also contains
the documents from each input file. See DROP DOCUMENTS for information on deleting
documents.

B Variables are copied in order from the first file specified, then from the second file specified,
and so on. Variables that are not contained in all files receive the system-missing value for
cases that do not have values for those variables.

m [f the same variable name exists in more than one file but the format type (numeric or string)
does not match, the command is not executed.

m [f a numeric variable has the same name but different formats (for example, ¥8.0 and F8. 2)
in different input files, the format of the variable in the first-named file is used.

m [f a string variable has the same name but different formats (for example, 224 and A16) in
different input files, the command is not executed.

m [f the active dataset is named as an input file, any N and SAMPLE commands that have been

specified are applied to the active dataset before the files are combined.

104

ADD FILES

m [f only one of the files is weighted, the program turns weighting off when combining cases
from the two files. To weight the cases, use the WEIGHT command again.

Limitations
B A maximum of 50 files can be combined on one ADD FILES command.

® The TEMPORARY command cannot be in effect if the active dataset is used as an input file.

Examples

ADD FILES FILE="c:\data\schooll.sav"
/FILE="c:\data\school2.sav".

B ADD FILES concatenates cases from the SPSS-format data files schooll.sav and school2.sav.
All cases from schooll.sav precede all cases from school2.sav in the resulting file.

SORT CASES BY LOCATN DEPT.

ADD FILES FILE="c:\data\source.sav" /FILE=* /BY LOCATN DEPT
/KEEP AVGHOUR AVGRAISE LOCATN DEPT SEX HOURLY RAISE /MAP.

SAVE OUTFILE="c:\data\prsnnl.sav".

B SORT CASES sorts cases in the active dataset in ascending order of their values for LOCATN
and DEPT.

B ADD FILES combines two files: the SPSS-format data file source.sav and the sorted active
dataset. The file source.sav must also be sorted by LOCATN and DEPT.

®m BY indicates that the keys for interleaving cases are LOCATN and DEPT, the same variables
used on SORT CASES.

B KEEP specifies the variables to be retained in the resulting file.
m MaP produces a list of variables in the resulting file and the two input files.

B SAVE saves the resulting file as a new SPSS-format data file named prsnnl.sav.

FILE Subcommand

FILE identifies the files to be combined. A separate FILE subcommand must be used for each
input file.

B An asterisk may be specified on FILE to indicate the active dataset.
B Dataset names instead of file names can be used to refer to currently open datasets.

® The order in which files are named determines the order of cases in the resulting file.

Example

GET DATA /TYPE=XLS /FILE='c:\temp\excelfilel.xls'.
DATASET NAME exceldatal.
GET DATA /TYPE=XLS /FILE='c:\temp\excelfile2.xls'.
ADD FILES FILE='exceldatal'

/FILE=%*

/FILE="'c:\temp\spssdata.sav'.

105
ADD FILES

RENAME Subcommand

RENAME renames variables in input files before they are processed by ADD FILES. RENAME
follows the FILE subcommand that specifies the file containing the variables to be renamed.

B RENAME applies only to the FILE subcommand immediately preceding it. To rename
variables from more than one input file, enter a RENAME subcommand after each FILE
subcommand that specifies a file with variables to be renamed.

m Specifications for RENAME consist of a left parenthesis, a list of old variable names, an equals
sign, a list of new variable names, and a right parenthesis. The two variable lists must name
or imply the same number of variables. If only one variable is renamed, the parentheses are
optional.

B More than one such specification can be entered on a single RENAME subcommand, each
enclosed in parentheses.

m The To keyword can be used to refer to consecutive variables in the file and to generate
new variable names.

B RENAME takes effect immediately. KEEP and DROP subcommands entered prior to RENAME
must use the old names, while those entered after RENAME must use the new names.

m All specifications within a single set of parentheses take effect simultaneously. For example,
the specification RENAME (A,B = B, A) swaps the names of the two variables.

B Variables cannot be renamed to scratch variables.

m Input data files are not changed on disk; only the copy of the file being combined is affected.

Example

ADD FILES FILE="c:\data\clients.sav" /RENAME= (TEL_NO, ID_NO = PHONE, ID)
/FILE="c:\data\master.sav" /BY ID.

B ADD FILES adds new client cases from the file clients.sav to existing client cases in the
file master.sav.

B Two variables on clients.sav are renamed prior to the match. TEL NO is renamed PHONE to
match the name used for phone numbers in the master file. /D _NO is renamed /D so that
it will have the same name as the identification variable in the master file and can be used
on the BY subcommand.

® The BY subcommand orders the resulting file according to client ID number.

BY Subcommand

BY specifies one or more key variables that determine the order of cases in the resulting file.
When BY is specified, cases from the input files are interleaved according to their values for
the key variables.

® BY must follow the FILE subcommands and any associated RENAME and TN subcommands.
m The key variables specified on BY must be present and have the same names in all input files.

m Key variables can be long or short string variables or numerics.

106

ADD FILES

All input files must be sorted in ascending order of the key variables. If necessary, use SORT
CASES before ADD FILES.

Cases in the resulting file are ordered by the values of the key variables. All cases from the
first file with the first value for the key variable are first, followed by all cases from the
second file with the same value, followed by all cases from the third file with the same
value, and so forth. These cases are followed by all cases from the first file with the next
value for the key variable, and so on.

Cases with system-missing values are first in the resulting file. User-missing values are
interleaved with other values.

DROP and KEEP Subcommands

DROP and KEEP are used to include only a subset of variables in the resulting file. DROP specifies
a set of variables to exclude and KEEP specifies a set of variables to retain.

DROP and KEEP do not affect the input files on disk.
DROP and KEEP must follow all FILE and RENAME subcommands.

DROP and KEEP must specify one or more variables. If RENAME is used to rename variables,
specify the new names on DROP and KEEP.

DROP and KEEP take effect immediately. If a variable specified on DROP or KEEP does not
exist in the input files, was dropped by a previous DROP subcommand, or was not retained

by a previous KEEP subcommand, the program displays an error message and does not
execute the ADD FILES command.

DROP cannot be used with variables created by the IN, FIRST, or LAST subcommands.

KEEP can be used to change the order of variables in the resulting file. With KEEP, variables
are kept in the order in which they are listed on the subcommand. If a variable is named
more than once on KEEP, only the first mention of the variable is in effect; all subsequent
references to that variable name are ignored.

The keyword ALL can be specified on KEEP. ALL must be the last specification on KEEP, and
it refers to all variables not previously named on that subcommand. It is useful when you
want to arrange the first few variables in a specific order.

Example

ADD FILES FILE="c:\data\particle.sav" /RENAME=(PARTIC=pollutel)
/FILE="c:\data\gas.sav" /RENAME=(OZONE TO SULFUR=pollut2 TO pollute4)
/KEEP=pollutel pollute2 pollute3 polluted.

® The renamed variables are retained in the resulting file. KEEP is specified after all the FILE

and RENAME subcommands, and it refers to the variables by their new names.

IN Subcommand

IN creates a new variable in the resulting file that indicates whether a case came from the input
file named on the preceding FILE subcommand. IN applies only to the file specified on the
immediately preceding FILE subcommand.

107
ADD FILES

IN has only one specification, the name of the flag variable.

The variable created by IN has the value 1 for every case that came from the associated input
file and the value O for every case that came from a different input file.

B Variables created by IN are automatically attached to the end of the resulting file and cannot
be dropped. If FIRST or LAST are used, the variable created by IN precedes the variables
created by FIRST or LAST.

Example

ADD FILES FILE="c:\data\weeklO.sav" /FILE="c:\data\weekll.sav"
/IN=INWEEK1l /BY=EMPID.

B IN creates the variable INWEEKI, which has the value 1 for all cases in the resulting file
that came from the input file week/1.sav and the value 0 for those cases that were not in
the file weekll.sav.

Example

ADD FILES FILE="c:\data\weeklO.sav" /FILE="c:\data\weekll.sav"
/IN=INWEEK11l /BY=EMPID.
IF (NOT INWEEK11l) SALARY1=0.
The variable created by IN is used to screen partially missing cases for subsequent analyses.

Since IN variables have either the value 1 or 0, they can be used as logical expressions,
where 1 = true and 0 = false. The IF command sets the variable SALARY1 equal to 0 for all
cases that came from the file INWEEK]].

FIRST and LAST Subcommands

FIRST and LAST create logical variables that flag the first or last case of a group of cases with
the same value on the BY variables. FIRST and LAST must follow all FILE subcommands and
their associated RENAME and IN subcommands.

® FIRST and LAST have only one specification, the name of the flag variable.

B FIRST creates a variable with the value 1 for the first case of each group and the value 0
for all other cases.

B LAST creates a variable with the value 1 for the last case of each group and the value 0
for all other cases.

B Variables created by FIRST and LAST are automatically attached to the end of the resulting
file and cannot be dropped.

Example

ADD FILES FILE="c:\data\schooll.sav" /FILE="c:\data\school2.sav"
/BY=GRADE /FIRST=HISCORE.

m The variable HISCORE contains the value 1 for the first case in each grade in the resulting file
and the value 0 for all other cases.

108

ADD FILES

MAP Subcommand

MAP produces a list of the variables included in the new active dataset and the file or files from
which they came. Variables are listed in the order in which they exist in the resulting file. MAP has
no specifications and must follow after all FTILE and RENAME subcommands.

B Multiple MAP subcommands can be used. Each MAP subcommand shows the current status of
the active dataset and reflects only the subcommands that precede the MAP subcommand.

m To obtain a map of the active dataset in its final state, specify MAP last.

m [f a variable is renamed, its original and new names are listed. Variables created by IN,
FIRST, and LAST are not included in the map, since they are automatically attached to
the end of the file and cannot be dropped.

Adding Cases from Different Data Sources

You can add cases from any data source that SPSS can read by defining dataset names for each
data source that you read (DATASET NAME command) and then using ADD FILES to add the cases
from each file. The following example merges the contents of three text data files, but it could just
as easily merge the contents of a text data file, and Excel spreadsheet, and a database table.

Example

DATA LIST FILE="c:\data\l\gasdatal.txt"
/1 OZONE 10-12 CO 20-22 SULFUR 30-32.

DATASET NAME gasdatal.

DATA LIST FILE="c:\data\gasdata2.txt"
/1 OZONE 10-12 CO 20-22 SULFUR 30-32.

DATASET NAME gasdataZ2.

DATA LIST FILE="c:\data\l\gasdata3.txt"
/1 OZONE 10-12 CO 20-22 SULFUR 30-32.

DATASET NAME gasdata3.

ADD FILES FILE='gasdatal'
/FILE="'gasdata2'
/FILE="'gasdata3"'.

SAVE OUTFILE='c:\data\combined_data.sav'.

ADD VALUE LABELS

ADD VALUE LABELS varlist value 'label' value 'label'...[/varlist...]

This command takes effect immediately. It does not read the active dataset or execute pending
transformations. For more information, see Command Order on p. 21.

Example

ADD VALUE LABELS JOBGRADE 'P' 'Parttime Employee'
'C' 'Customer Support'.

Overview

ADD VALUE LABELS adds or alters value labels without affecting other value labels already
defined for that variable. In contrast, VALUE LABELS adds or alters value labels but deletes all
existing value labels for that variable when it does so.

Basic Specification

The basic specification is a variable name and individual values with associated labels.

Syntax Rules

m Labels can be assigned to values of any previously defined variable. It is not necessary to
enter value labels for all of a variable’s values.

m Each value label must be enclosed in apostrophes or quotation marks.

® When an apostrophe occurs as part of a label, enclose the label in quotation marks or enter the
internal apostrophe twice with no intervening space.

Value labels can contain any characters, including blanks.

The same labels can be assigned to the same values of different variables by specifying
a list of variable names. For string variables, the variables on the list must have the same
defined width (for example, A8).

® Multiple sets of variable names and value labels can be specified on one ADD VALUE
LABELS command as long as each set is separated from the previous one by a slash.

m To continue a label from one command line to the next, specify a plus sign (+) before the
continuation of the label and enclose each segment of the label, including the blank between
them, in apostrophes or quotation marks.

Operations

® Unlike most transformations, ADD VALUE LABELS takes effect as soon as it is encountered
in the command sequence. Thus, special attention should be paid to its position among
commands.

109

110

ADD VALUE LABELS

B The added value labels are stored in the active dataset dictionary.

B ADD VALUE LABELS can be used for variables that have no previously assigned value labels.

® Adding labels to some values does not affect labels previously assigned to other values.

Limitations

® Value labels cannot exceed 120 bytes.

B Value labels cannot be assigned to long string variables.

Examples

Adding Value Labels

ADD VALUE LABELS V1 TO V3 1 'Officials & Managers'

6 'Service Workers'
/V4 'N' 'New Employee'.

Labels are assigned to the values 1 and 6 of the variables between and including '/ and
V'3 in the active dataset.

Following the required slash, a label for the value N for the variable V4 is specified. N is a
string value and must be enclosed in apostrophes or quotation marks.

If labels already exist for these values, they are changed in the dictionary. If labels do not
exist for these values, new labels are added to the dictionary.

Existing labels for other values for these variables are not affected.

Specifying a Label on Multiple Lines

ADD VALUE LABELS OFFICE88 1 "EMPLOYEE'S OFFICE ASSIGNMENT PRIOR"

+ " TO 1988".

m The label for the value 1 for OFFICESS is specified on two command lines. The plus sign

concatenates the two string segments, and a blank is included at the beginning of the second
string in order to maintain correct spacing in the label.

Value Labels for String Variables

For short string variables, the values and the labels must be enclosed in apostrophes or
quotation marks.

If a specified value is longer than the defined width of the variable, the program displays a
warning and truncates the value. The added label will be associated with the truncated value.

If a specified value is shorter than the defined width of the variable, the program adds blanks

to right-pad the value without warning. The added label will be associated with the padded
value.

If a single set of labels is to be assigned to a list of string variables, the variables must have
the same defined width (for example, A8).

m

ADD VALUE LABELS

Example

ADD VALUE LABELS STATE 'TEX' 'TEXAS' 'TEN' 'TENNESSEE'
'MIN' 'MINNESOTA'.

B ADD VALUE LABELS assigns labels to three values of the variable STATE. Each value and
each label is specified in apostrophes.

B Assuming that the variable STATE is defined as three characters wide, the labels TEXAS,
TENNESSEE, and MINNESOTA will be appropriately associated with the values TEX, TEN,
and MIN. However, if STATE was defined as two characters wide, the program would truncate
the specified values to two characters and would not be able to associate the labels correctly.
Both TEX and TEN would be truncated to 7E and would first be assigned the label TEXAS,
which would then be changed to TENNESSEE by the second specification.

Example
ADD VALUE LABELS STATE REGION "U" "UNKNOWN".

m The label UNKNOWN is assigned to the value U for both STATE and REGION.

B STATE and REGION must have the same defined width. If they do not, a separate specification
must be made for each, as in the following:

ADD VALUE LABELS STATE "U" "UNKNOWN" / REGION "U" "UNKNOWN".

AGGREGATE

AGGREGATE [OUTFILE={'savfile'|'dataset'}]
{* } [MODE={REPLACE }]1 [OVERWRITE={NO }]
{ADDVARIABLES} {YES}

[/MISSING=COLUMNWISE] [/DOCUMENT]

[/PRESORTED] /BREAK=varlist[({A})][varlist...]
{D}

/aggvar['label'] aggvar(['label']...=function(arguments)
[/aggvar ...]
Available functions:
SUM Sum MEAN Mean
SD Standard deviation MAX Maximum
MIN Minimum PGT % of cases greater than value
PLT % of cases less than value PIN % of cases between values
POUT % of cases not in range FGT Fraction greater than value
FLT Fraction less than value FIN Fraction between values
FOUT Fraction not in range N Weighted number of cases
NU Unweighted number of cases NMISS Weighted number of missing
cases
NUMISS Unweighted number of missing FIRST First nonmissing value
cases
LAST Last nonmissing value MEDIAN Median

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

AGGREGATE
/OUTFILE="'c:\temp\temp.sav'
/BREAK=gender
/age_mean=MEAN (age) .

Overview

AGGREGATE aggregates groups of cases in the active dataset into single cases and creates a new
aggregated file or creates new variables in the active dataset that contain aggregated data. The
values of one or more variables in the active dataset define the case groups. These variables are
called break variables. A set of cases with identical values for each break variable is called a
break group. Aggregate functions are applied to source variables in the active dataset to create
new aggregated variables that have one value for each break group.

112

13

AGGREGATE
Options

Data. You can create new variables in the active dataset that contain aggregated data, replace
the active dataset with aggregated results, or create a new SPSS-format data file that contains
the aggregated results.

Documentary Text. You can copy documentary text from the original file into the aggregated file
using the DOCUMENT subcommand. By default, documentary text is dropped.

Aggregated Variables. You can create aggregated variables using any of 19 aggregate functions.
The functions SUM, MEAN, and SD can aggregate only numeric variables. All other functions can
use both numeric and string variables.

Labels and Formats. You can specify variable labels for the aggregated variables. Variables
created with the functions MAX, MIN, FIRST, and LAST assume the formats and value labels of
their source variables. All other variables assume the default formats described under Aggregate
Functions on p. 117.

Basic Specification

The basic specification is BREAK and at least one aggregate function and source variable.
OUTFILE specifies a name for the aggregated file. BREAK names the case grouping (break)
variables. The aggregate function creates a new aggregated variable.

Subcommand Order
m If specified, OUTFILE must be specified first.

m [f specified, DOCUMENT and PRESORTED must precede BREAK. No other subcommand can be
specified between these two subcommands.

B MISSING, if specified, must immediately follow OUTFILE.

m The aggregate functions must be specified last.

Operations

m When replacing the active dataset or creating a new data file, the aggregated file contains the
break variables plus the variables created by the aggregate functions.

B AGGREGATE excludes cases with missing values from all aggregate calculations except those
involving the functions N, NU, NMISS, and NUMISS.

m Unless otherwise specified, AGGREGATE sorts cases in the aggregated file in ascending order
of the values of the grouping variables.

m [f PRESORTED is specified, a new aggregate case is created each time a different value or
combination of values is encountered on variables named on the BREAK subcommand.

B AGGREGATE ignores split-file processing. To achieve the same effect, name the variable or
variables used to split the file as break variables before any other break variables. AGGREGATE
produces one file, but the aggregated cases are in the same order as the split files.

114

AGGREGATE

Example

AGGREGATE

/OUTFILE="'c:\temp\temp.sav'
/BREAK=gender marital
/age_mean=MEAN (age)
/age_median=MEDIAN (age)
/income_median=MEDIAN (income) .

AGGREGATE creates a new SPSS-format data file, temp.sav, that contains two break variables
(gender and marital) and all of the new aggregate variables.

BREAK specifies gender and marital as the break variables. In the aggregated file, cases are
sorted in ascending order of gender and in ascending order of marital within gender. The
active dataset remains unsorted.

Three aggregated variables are created: age mean contains the mean age for each group
defined by the two break variables; age median contains the median age; and income_median
contains the median income.

OUTFILE Subcommand

OUTFILE specifies the handling of the aggregated results. It must be the first subcommand on
the AGGREGATE command.

B OUTFILE='file specification' saves the aggregated data to a new file, leaving the
active dataset unaffected. The file contains the new aggregated variables and the break
variables that define the aggregated cases.

B A defined dataset name can be used for the file specification, saving the aggregated data
to a dataset in the current session. The dataset must be defined before being used in the
AGGREGATE command. For more information, see DATASET DECLARE on p. 475.

B OQUTFILE=* with no additional keywords on the OUTFILE subcommand will replace the
active dataset with the aggregated results.

B QUTFILE=* MODE=ADDVARIABLES appends the new variables with the aggregated data to
the active dataset (instead of replacing the active dataset with the aggregated data).

B OUTFILE=* MODE=ADDVARIABLES OVERWRITE=YES overwrites variables in the active
dataset if those variable names are the same as the aggregate variable names specified on
the AGGREGATE command.

B MODE and OVERWRITE can be used only with OUTFILE=*; they are invalid with
OUTFILE='file specification'.

B Omission of the OUTFILE subcommand is equivalent to OUTFILE=* MODE=ADDVARIABLES.

Example

AGGREGATE

/OUTFILE=* MODE=ADDVARIABLES
/BREAK=region

/sales_mean = MEAN(varl)
/sales_median = MEDIAN (varl)
/sales_sum = SUM(varl).

115
AGGREGATE

m The aggregated variables are appended to the end of the active data file. No existing cases
or variables are deleted.

m For each case, the new aggregated variable values represent the mean, median, and total
(sum) sales values for its region.

Creating a New Aggregated Data File versus Appending Aggregated Variables

When you create a new aggregated data file with OUTFILE='file specification' or
OUTFILE=* MODE=REPLACE, the new file contains:

B The break variables from the original data file and the new aggregate variables defined by the
aggregate functions. Original variables other than the break variables are not retained.

B One case for each group defined by the break variables. If there is one break variable with
two values, the new data file will contain only two cases.

When you append aggregate variables to the active dataset with OUTFILE=*
MODE=ADDVARIABLES, the modified data file contains:

m All of the original variables plus all of the new variables defined by the aggregate functions,
with the aggregate variables appended to the end of the file.

B The same number of cases as the original data file. The data file itself is not aggregated. Each
case with the same value(s) of the break variable(s) receives the same values for the new
aggregate variables. For example, if gender is the only break variable, all males would
receive the same value for a new aggregate variable that represents the average age.

Example

DATA LIST FREE /age (F2) gender (F2).
BEGIN DATA
25 1
35 1
20 2
30 2
60 2
END DATA.
*create new file with aggregated results.
AGGREGATE
/OUTFILE='c:\temp\temp.sav'
/BREAK=gender
/age_mean=MEAN (age)
/groupSize=N.
*append aggregated variables to active dataset.
AGGREGATE
/OUTFILE=* MODE=ADDVARIABLES
/BREAK=gender
/age_mean=MEAN (age)
/groupSize=N.

116

AGGREGATE
Figure 8-1
New aggregated data file
temp.zay - 5P5S Data Editor !Elm
File Edit “iew Data Transfom Analyze Graphs Uhlbkes Add-ons Window Help
|8 - gender |
gender | age _rean | groupSize yar war vaﬂ
1 1 30.00 2
2 2 867 3
3
4
5
B
TITI\Bata\ﬁewAVariable View f KN | W
Figure 8-2

Aggregate variables appended to active dataset

Fil= Edit “iew Data Transform Analyee Graphs Utliies Add-on: Window Help
|12: age |
age gender | age_mzan| groupSize var \raﬂ

1 25 1 30.00 2

2) 1 30.00 2

3 20 2 36.67 3

4 30 2 36.67 3

g &0 2 36.67 3

6 -
TITI\Bata\ﬂew A ovariable view [K | qP

BREAK Subcommand

BREAK lists the grouping variables, also called break variables. Each unique combination of
values of the break variables defines one break group.

m The variables named on BREAK can be any combination of variables in the active dataset.

m Unless PRESORTED is specified, aggregated variables are appended to the active dataset
(OUTFILE=* MODE=ADDVARIABLES), AGGREGATE sorts cases after aggregating. By
default, cases are sorted in ascending order of the values of the break variables. AGGREGATE
sorts first on the first break variable, then on the second break variable within the groups
created by the first, and so on.

m Sort order can be controlled by specifying an A (for ascending) or D (for descending) in
parentheses after any break variables.

The designations A and D apply to all preceding undesignated variables.

The subcommand PRESORTED overrides all sorting specifications, and no sorting is performed
with OUTFILE=* MODE=ADDVARIABLES.

AGGREGATE
/OUTFILE=* MODE=ADDVARIABLES
/BREAK=region
/sales_mean = MEAN(varl)
/sales_median = MEDIAN (varl)

17
AGGREGATE

/sales_sum = SUM(varl).

For each case, the new aggregated variable values represent the mean, median, and total (sum)
sales values for its region.

DOCUMENT Subcommand

DOCUMENT copies documentation from the original file into the aggregated file.
B DOCUMENT must appear after OUTFILE but before BREAK.

m By default, documents from the original data file are not retained with the aggregated data file
when creating a new aggregated data file with either OUTFILE='file specification'

or OUTFILE=* MODE=REPLACE. The DOCUMENT subcommand retains the original data
file documents.

B Appending variables with OUTFILE=* MODE=ADDVARIABLES has no effect on data file

documents, and the DOCUMENT subcommand is ignored. If the data file previously had
documents, they are retained.

PRESORTED Subcommand

If the data are already sorted in order by the break variables, you can reduce run time and memory
requirements by using the PRESORTED subcommand.

m [f specified, PRESORTED must precede BREAK. The only specification is the keyword
PRESORTED. PRESORTED has no additional specifications.

B When PRESORTED is specified, the program forms an aggregate case out of each group of
adjacent cases with the same values for the break variables.

B When PRESORTED is specified, if AGGREGATE is appending new variables to the active
dataset rather than writing a new file or replacing the active dataset, the cases must be sorted
in ascending order by the BREAK variables.

Example

AGGREGATE OUTFILE='c:\temp\temp.sav'
/PRESORTED
/BREAK=gender marital
/mean_age=MEAN (age) .

Aggregate Functions

An aggregated variable is created by applying an aggregate function to a variable in the active
dataset. The variable in the active dataset is called the source variable, and the new aggregated
variable is the target variable.

m The aggregate functions must be specified last on AGGREGATE.

m The simplest specification is a target variable list, followed by an equals sign, a function
name, and a list of source variables.

AGGREGATE

The number of target variables named must match the number of source variables.

When several aggregate variables are defined at once, the first-named target variable is based
on the first-named source variable, the second-named target is based on the second-named

source, and so on.

B Only the functions MAX, MIN, FIRST, and LAST copy complete dictionary information from
the source variable. For all other functions, new variables do not have labels and are assigned
default dictionary print and write formats. The default format for a variable depends on the
function used to create it (see the list of available functions below).

B You can provide a variable label for a new variable by specifying the label in apostrophes
immediately following the new variable name. Value labels cannot be assigned in

AGGREGATE.

m To change formats or add value labels to an active dataset created by AGGREGATE, use the
PRINT FORMATS, WRITE FORMATS, FORMATS, or VALUE LABELS command. If the
aggregate file is written to disk, first retrieve the file using GET, specify the new labels and

formats, and resave the file.

The following is a list of available functions:

SUM(varlist)
MEAN(varlist)
MEDIAN(varlist)
SD(varlist)
MAX(varlist)

MIN(varlist)
PGT(varlist,value)
PLT(varlist,value)
PIN(varlist,valuel,value2)

POUT (varlist,valuel,value2)

FGT(varlist,value)
FLT(varlist,value)
FIN(varlist,valuel,value2)

FOUT (varlist,valuel,value2)

N(varlist)

NU(varlist)

Sum across cases. Default formats are F8.2.

Mean across cases. Default formats are F8. 2.

Median across cases. Default formats are F8.2.

Standard deviation across cases. Default formats are F8. 2.

Maximum value across cases. Complete dictionary information is
copied from the source variables to the target variables.

Minimum value across cases. Complete dictionary information is
copied from the source variables to the target variables.

Percentage of cases greater than the specified value. Default
formats are F5. 1.

Percentage of cases less than the specified value. Default formats
are F5.1.

Percentage of cases between valuel and value?, inclusive. Default
formats are F5. 1.

Percentage of cases not between valuel and value2. Cases where
the source variable equals valuel or value?2 are not counted. Default
formats are F5. 1.

Fraction of cases greater than the specified value. Default formats
are F5.3.

Fraction of cases less than the specified value. Default formats
are F5.3.

Fraction of cases between valuel and value?, inclusive. Default
formats are F5. 3.

Fraction of cases not between valuel and value2. Cases where the
source variable equals valuel or value? are not counted. Default
formats are F5. 3.

Weighted number of cases in break group. Default formats are F7. 0
for unweighted files and F8. 2 for weighted files.

Unweighted number of cases in break group. Default formats are
F7.0.

119

AGGREGATE

NMISS(varlist) Weighted number of missing cases. Default formats are 7.0 for
unweighted files and F8. 2 for weighted files.

NUMISS(varlist) Unweighted number of missing cases. Default formats are ¥7 . 0.

FIRST(varlist) First nonmissing observed value in break group. Complete

dictionary information is copied from the source variables to the
target variables.

LAST (varlist) Last nonmissing observed value in break group. Complete
dictionary information is copied from the source variables to the
target variables.

m The functions SUM, MEAN, and SD can be applied only to numeric source variables. All other
functions can use short and long string variables as well as numeric ones.

® The N and NU functions do not require arguments. Without arguments, they return the number
of weighted and unweighted valid cases in a break group. If you supply a variable list, they
return the number of weighted and unweighted valid cases for the variables specified.

m For several functions, the argument includes values as well as a source variable designation.
Either blanks or commas can be used to separate the components of an argument list.

® For PIN, POUT, FIN, and FOUT, the first value should be less than or equal to the second. If
the first is greater, AGGREGATE automatically reverses them and prints a warning message.
If the two values are equal, PIN and FIN calculate the percentages and fractions of values
equal to the argument. POUT and FOUT calculate the percentages and fractions of values
not equal to the argument.

m String values specified in an argument should be enclosed in apostrophes. They are evaluated
in alphabetical order.

Using the MEAN Function

AGGREGATE OUTFILE='AGGEMP.SAV' /BREAK=LOCATN
/AVGSAL 'Average Salary' AVGRAISE = MEAN (SALARY RAISE) .

B AGGREGATE defines two aggregate variables, AVGSAL and AVGRAISE.
B AVGSAL is the mean of SALARY for each break group, and AVGRAISE is the mean of RAISE.
m The label Average Salary is assigned to AVGSAL.

Using the PLT Function

AGGREGATE OUTFILE=* /BREAK=DEPT
/LOWVAC, LOWSICK = PLT (VACDAY SICKDAY,10).

B AGGREGATE creates two aggregated variables: LOWVAC and LOWSICK. LOWVAC is the
percentage of cases with values less than 10 for VACDAY, and LOWSICK is the percentage of
cases with values less than 10 for SICKDAY.

Using the FIN Function

AGGREGATE OUTFILE='GROUPS.SAV' /BREAK=OCCGROUP
/COLLEGE = FIN(EDUC,13,16).

120

AGGREGATE

B AGGREGATE creates the variable COLLEGE, which is the fraction of cases with 13 to 16
years of education (variable EDUC).

Using the PIN Function

AGGREGATE OUTFILE=* /BREAK=CLASS
/LOCAL = PIN(STATE, 'IL',6 'IO').

B AGGREGATE creates the variable LOCAL, which is the percentage of cases in each break
group whose two-letter state code represents Illinois, Indiana, or lowa. (The abbreviation for
Indiana, IN, is between IL and IO in an alphabetical sort sequence.)

MISSING Subcommand

By default, AGGREGATE uses all nonmissing values of the source variable to calculate aggregated
variables. An aggregated variable will have a missing value only if the source variable is missing
for every case in the break group. You can alter the default missing-value treatment by using

the MISSING subcommand. You can also specify the inclusion of user-missing values on any
function.

B MISSING must immediately follow OUTFILE.
B COLUMNWISE is the only specification available for MISSING.

m [f COLUMNWISE is specified, the value of an aggregated variable is missing for a break group
if the source variable is missing for any case in the group.

B COLUMNWISE does not affect the calculation of the N, NU, NMISS, or NUMISS functions.

B COLUMNWISE does not apply to break variables. If a break variable has a missing value, cases
in that group are processed and the break variable is saved in the file with the missing value.
Use SELECT IF if you want to eliminate cases with missing values for the break variables.

Including Missing Values

You can force a function to include user-missing values in its calculations by specifying a period
after the function name.

B AGGREGATE ignores periods used with the functions N, NU, NMISS, and NUMISS if these
functions have no arguments.

m User-missing values are treated as valid when these four functions are followed by a period
and have a variable as an argument. NMISS. (AGE) treats user-missing values as valid and
thus gives the number of cases for which AGE has the system-missing value only.

The effect of specifying a period with N, NU, NMISS, and NUMISS is illustrated by the following:

N = N. = N(AGE) + NMISS(AGE) = N. (AGE) + NMISS. (AGE)

NU = NU. = NU(AGE) + NUMISS(AGE) = NU.(AGE) + NUMISS. (AGE)

® The function N (the same as N. with no argument) yields a value for each break group that

equals the number of cases with valid values (N (AGE)) plus the number of cases with user-
or system-missing values (NMISS (AGE)).

121

AGGREGATE

®m This in turn equals the number of cases with either valid or user-missing values (N. (AGE))
plus the number with system-missing values (NMISS. (AGE)).

B The same identities hold for the NU, NMISS, and NUMISS functions.

Default Treatment of Missing Values

AGGREGATE OUTFILE='AGGEMP.SAV' /MISSING=COLUMNWISE /BREAK=LOCATN
/AVGSAL = MEAN (SALARY) .

B AVGSAL is missing for an aggregated case if SALARY is missing for any case in the break
group.

Including User-Missing Values

AGGREGATE OUTFILE=* /BREAK=DEPT
/LOVAC = PLT. (VACDAY,10).

m LOVAC is the percentage of cases within each break group with values less than 10 for
VACDAY, even if some of those values are defined as user missing.

Aggregated Values that Retain Missing-Value Status

AGGREGATE OUTFILE='CLASS.SAV' /BREAK=GRADE
/FIRSTAGE = FIRST. (AGE) .

m The first value of AGE in each break group is assigned to the variable FIRSTAGE.

m [f the first value of AGE in a break group is user missing, that value will be assigned to
FIRSTAGE. However, the value will retain its missing-value status, since variables created
with FIRST take dictionary information from their source variables.

Comparing Missing-Value Treatments

The table below demonstrates the effects of specifying the MISSING subcommand and a period
after the function name. Each entry in the table is the number of cases used to compute the
specified function for the variable EDUC, which has 10 nonmissing cases, 5 user-missing cases,
and 2 system-missing cases for the group. Note that columnwise treatment produces the same
results as the default for every function except the MEAN function.

Table 8-1
Default versus columnwise missing-value treatments

Function Default Columnwise
N 17 17

N. 17 17

N (EDUC) 10 10

N. (EDUC) 15 15

MEAN (EDUC) 10

MEAN. (EDUC) 15

122

AGGREGATE

Function
NMISS (EDUC)
NMISS. (EDUC)

Default
7
2

Columnwise
7
2

AIM

AIM grouping-var
[/CATEGORICAL varlist]
[/CONTINUOUS varlist]

[/CRITERIA [ADJUST = {BONFERRONI**}] [CI = {95*%* }]

{NONE } {value}
[HIDENOTSIG = {NO**}]] [SHOWREFLINE = {NO 111
{YES } {YES**}

[/MISSING {EXCLUDE**}]
{INCLUDE }

[/PLOT [CATEGORY] [CLUSTER [(TYPE = {BAR*})]] [ERRORBAR]
{PIE }
[IMPORTANCE [([X = {GROUP* }] [Y = {TEST* }1)11] 1
{VARIABLE} {PVALUE}

* Default if the keyword is omitted.
** Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

AIM TSC_1
/CATEGORICAL type
/CONTINUOUS price engine_s horsepow wheelbas width length
curb_wgt fuel_cap mpg
/PLOT CLUSTER.

Overview

AIM provides graphical output to show the relative importance of categorical and scale variables
to the formation of clusters of cases as indicated by the grouping variable.

Basic Specification

The basic specification is a grouping variable, a CATEGORICAL or CONTINUOUS subcommand,
and a PLOT subcommand.

Subcommand Order
m The grouping variable must be specified first.

® Subcommands can be specified in any order.

123

124

AIM

Syntax Rules

® All subcommands should be specified only once. If a subcommand is repeated, only the last
specification will be used.

Limitations

The SPSS WEIGHT variable, if specified, is ignored by this procedure.

Grouping Variable
m The grouping variable must be the first specification after the procedure name.

® The grouping variable can be of any type (numeric or string).

Example

AIM clu_id
/CONTINUOUS age work salary.

m This is a typical example where CLU ID is the cluster membership saved from a SPSS

clustering procedure (say TwoStep Cluster) where AGE, WORK, and SALARY are the
variables used to find the clusters.

CATEGORICAL Subcommand

Variables that are specified in this subcommand are treated as categorical variables, regardless
of their defined measurement level.

m There is no restriction on the types of variables that can be specified on this subcommand.

m The grouping variable cannot be specified on this subcommand.

CONTINUOUS Subcommand

Variables that are specified in this subcommand are treated as scale variables, regardless of their
defined measurement level.

B Variables specified on this subcommand must be numeric.

B The grouping variable cannot be specified on this subcommand.

CRITERIA Subcommand

The CRITERIA subcommand offers the following options in producing graphs.

ADJUST = BONFERRONI | NONE

Adjust the confidence level for simultaneous confidence intervals or the
tolerance level for simultaneous tests. BONFERRONT uses Bonferroni
adjustments. This is the default. NONE specifies that no adjustments
should be applied.

125
AIM

CI = number Confidence Interval. This option controls the confidence level. Specify
a value greater than 0 and less than 100. The default value is 95.

HIDENOTSIG =NO | YES

Hide groups or variables that are determined to be not significant.
YES specifies that all confidence intervals and all test results should
be shown. This is the default. NO specifies that only the significant
confidence intervals and test results should be shown.

SHOWREFLINE = NO | YES

Display reference lines that are the critical values or the tolerance
levels in tests. YES specifies that the appropriate reference lines should
be shown. This is the default. NO specifies that reference lines should
not be shown.

MISSING Subcommand

The MISSING subcommand specifies the way to handle cases with user-missing values.

B A case is never used if it contains system-missing values in the grouping variable, categorical
variable list, or the continuous variable list.

m [f this subcommand is not specified, the default is EXCLUDE.

EXCLUDE Exclude both user-missing and system-missing values. This is the
default.
INCLUDE User-missing values are treated as valid. Only system-missing values

are not included in the analysis.

PLOT Subcommand

The PLOT subcommand specifies which graphs to produce.

CATEGORY Within Cluster Percentages. This option displays a clustered bar
chart for each categorical variable. The bars represent percentages of
categories in each cluster. The cluster marginal count is used as the
base for the percentages.

CLUSTER (TYPE=BAR | PIE)

Cluster frequency charts. Displays a bar or pie chart, depending upon
the option selected, representing the frequency of each level of the
grouping variable.

ERRORBAR Error Bar. This option displays an error bar by group ID for each
continuous variable.

IMPORTANCE (X=GROUP | VARIABLE Y=TEST | PVALUE)
Attribute Importance. This option displays a bar chart that shows the

relative importance of the attributes/variables. The specified options
further control the display.

126

AIM

X = GROUP causes values of the grouping variable to be displayed
on the x axis. A separate chart is produced for each variable. X =
VARIABLE causes variable names to be displayed on the x axis. A
separate chart is produced for each value of the grouping variable.

Y = TEST causes test statistics to be displayed on the y axis.
Student’s ¢ statistics are displayed for scale variables, and chi-square
statistics are displayed for categorical variables. Y = PVALUE causes
p-value-related measures to be displayed on the y axis. Specifically,
—logig(pvalue) is shown so that in both cases larger values indicate
“more significant” results.

Example: Importance Charts by Group

AIM clu_id
/CONTINUOUS age work salary
/CATEGORICAL minority
/PLOT CATEGORY CLUSTER (TYPE = PIE) IMPORTANCE (X=GROUP Y=TEST).

® A frequency pie chart is requested.

m Student’s ¢ statistics are plotted against the group ID for each scale variable, and chi-square
statistics are plotted against the group ID for each categorical variable.

Example: Importance Charts by Variable

AIM clu_id
/CONTINUOUS age work salary
/CATEGORICAL minority
/CRITERIA HIDENOTSIG=YES CI=95 ADJUST=NONE
/PLOT CATEGORY CLUSTER (TYPE = BAR)
IMPORTANCE (X = VARIABLE, Y = PVALUE).

A frequency bar chart is requested.

—log10(pvalue) values are plotted against variables, both scale and categorical, for each level
of the grouping variable.

m In addition, bars are not shown if their pvalues exceed 0.05.

ALSCAL

ALSCAL VARIABLES=varlist

[/FILE='savfile'| 'dataset"']

[CONFIG [({INITIAL})]] [ROWCONF [({INITIAL})]]
{FIXED } {FIXED }

[COLCONF [({INITIAL})]] [SUBJWGHT[({INITIAL})]]
{FIXED } {FIXED }

[STIMWGHT [({INITIAL})]]
{FIXED }

[/INPUT=ROWS ({ALL**})]
{n }

[/ SHAPE={ SYMMETRIC**}]
{ASYMMETRIC }

{RECTANGULAR}
[/LEVEL={ORDINAL** [([UNTIE] [SIMILAR])]}]
{INTERVALI[({1})] }
{ {n} }
{RATIO[({1})] }
{ {n} }
{NOMINAL }
[/CONDITION={MATRIX** 11
{ROW }
{UNCONDITIONAL}

[/ {MODEL }={EUCLID**}]
{METHOD} {INDSCAL }

{ASCAL }

{AINDS }

{GEMSCAL }

[/CRITERIA=[NEGATIVE] [CUTOFF({0**})] [CONVERGE({.001})]
{n} {n }
[ITER({30})] [STRESSMIN({.005})] [NOULB]
{n } {n }

[DIMENS ({2%** })] [DIRECTIONS (n)]

{min[,max]}
[CONSTRAIN] [TIESTORE (n) 1]
[/PRINT=[DATA] [HEADER]] [/PLOT=[DEFAULT] [ALL]]
[/OUTFILE='savfile'| 'dataset']
[/MATRIX:IN(Eisavfile'|'dataset'§)]

**Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

ALSCAL VARIABLES=ATLANTA TO TAMPA.

127

128

ALSCAL
ALSCAL was originally designed and programmed by Forrest W. Young, Yoshio Takane, and
Rostyslaw J. Lewyckyj of the Psychometric Laboratory, University of North Carolina.
Overview

ALSCAL uses an alternating least-squares algorithm to perform multidimensional scaling (MDS)
and multidimensional unfolding (MDU). You can select one of the five models to obtain stimulus
coordinates and/or weights in multidimensional space.

Options

Data Input. You can read inline data matrices, including all types of two- or three-way data, such
as a single matrix or a matrix for each of several subjects, using the INPUT subcommand. You
can read square (symmetrical or asymmetrical) or rectangular matrices of proximities with the
SHAPE subcommand and proximity matrices created by PROXIMITIES and CLUSTER with the
MATRIX subcommand. You can also read a file of coordinates and/or weights to provide initial or
fixed values for the scaling process with the FILE subcommand.

Methodological Assumptions. You can specify data as matrix-conditional, row-conditional, or
unconditional on the CONDITION subcommand. You can treat data as nonmetric (nominal or
ordinal) or as metric (interval or ratio) using the LEVEL subcommand. You can also use LEVEL
to identify ordinal-level proximity data as measures of similarity or dissimilarity, and you can
specify tied observations as untied (continuous) or leave them tied (discrete).

Model Selection. You can specify the most commonly used multidimensional scaling models by
selecting the correct combination of ALSCAL subcommands, keywords, and criteria. In addition
to the default Euclidean distance model, the MODEL subcommand offers the individual differences
(weighted) Euclidean distance model (INDSCAL), the asymmetric Euclidean distance model
(ascaL), the asymmetric individual differences Euclidean distance model (AINDS), and the
generalized Euclidean metric individual differences model (GEMSCAL).

Output. You can produce output that includes raw and scaled input data, missing-value patterns,

normalized data with means, squared data with additive constants, each subject’s scalar product

and individual weight space, plots of linear or nonlinear fit, and plots of the data transformations
using the PRINT and PLOT subcommands.

Basic Specification

The basic specification is VARIABLES followed by a variable list. By default, ALSCAL produces a
two-dimensional nonmetric Euclidean multidimensional scaling solution. Input is assumed to be
one or more square symmetric matrices with data elements that are dissimilarities at the ordinal
level of measurement. Ties are not untied, and conditionality is by subject. Values less than 0
are treated as missing. The default output includes the improvement in Young’s S-stress for
successive iterations, two measures of fit for each input matrix (Kruskal’s stress and the squared
correlation, RSQ), and the derived configurations for each of the dimensions.

129

ALSCAL

Subcommand Order

Subcommands can be named in any order.

Operations

ALSCAL calculates the number of input matrices by dividing the total number of observations
in the dataset by the number of rows in each matrix. All matrices must contain the same
number of rows. This number is determined by the settings on SHAPE and INPUT (if used).
For square matrix data, the number of rows in the matrix equals the number of variables. For
rectangular matrix data, it equals the number of rows specified or implied. For additional
information, see the INPUT and SHAPE subcommands below.

B ALSCAL ignores user-missing specifications in all variables in the configuration/weights file.
For more information, see FILE Subcommand on p. 132. The system-missing value is
converted to 0.

m With split-file data, AL.SCAL reads initial or fixed configurations from the configuration/weights
file for each split-file group. For more information, see FILE Subcommand on p. 132. If
there is only one initial configuration in the file, ALSCAL rereads these initial or fixed values
for successive split-file groups.

B By default, ALSCAL estimates upper and lower bounds on missing values in the active dataset
in order to compute the initial configuration. To prevent this, specify CRITERIA=NOULB.
Missing values are always ignored during the iterative process.

Limitations

B A maximum of 100 variables on the VARIABLES subcommand.

B A maximum of six dimensions can be scaled.

B ALSCAL does not recognize data weights created by the WEIGHT command.

B ALSCAL analyses can include no more than 32,767 values in each of the input matrices. Large
analyses may require significant computing time.

Example

* Alr distances among U.S. cities.
* Data are from Johnson and Wichern (1982), page 563.
DATA LIST

/ATLANTA BOSTON CINCNATI COLUMBUS DALLAS INDNPLIS

LITTROCK LOSANGEL MEMPHIS STLOUIS SPOKANE TAMPA 1-60.

BEGIN DATA

1

2

2

0
068 0
461 867 0
549 769 107 0
805 1819 943 1050 0
508 941 108 172 882 0
505 1494 618 725 325 562 0
197 3052 2186 2245 1403 2080 1701 0
366 1355 502 586 464 436 137 1831 0
558 1178 338 409 645 234 353 1848 294 0
467 2747 2067 2131 1891 1959 1988 1227 2042 1820 0
467 1379 928 985 1077 975 912 2480 779 1016 2821 0

END DATA.

130

ALSCAL

ALSCAL VARIABLES=ATLANTA TO TAMPA
/PLOT.

B By default, ALSCAL assumes a symmetric matrix of dissimilarities for ordinal-level variables.
Only values below the diagonal are used. The upper triangle can be left blank. The 12 cities
form the rows and columns of the matrix.

® The result is a classical MDS analysis that reproduces a map of the United States when the
output is rotated to a north-south by east-west orientation.

VARIABLES Subcommand

VARIABLES identifies the columns in the proximity matrix or matrices that ALSCAL reads.
B VARIABLES is required and can name only numeric variables.

® Each matrix must have at least four rows and four columns.

INPUT Subcommand

ALSCAL reads data row by row, with each case in the active dataset representing a single row
in the data matrix. (VARIABLES specifies the columns.) Use INPUT when reading rectangular
data matrices to specify how many rows are in each matrix.

m The specification on INPUT is ROWS. If INPUT is not specified or is specified without ROWS,
the default is ROWS (ALL) . ALSCAL assumes that each case in the active dataset represents
one row of a single input matrix and that the result is a square matrix.

B You can specify the number of rows (7) in each matrix in parentheses after the keyword ROWS.
The number of matrices equals the number of observations divided by the number specified.

® The number specified on ROWS must be at least 4 and must divide evenly into the total number
of rows in the data.

m With split-file data, n refers to the number of cases in each split-file group. All split-file
groups must have the same number of rows.

Example

ALSCAL VARIABLES=V1 to V7 /INPUT=ROWS(8).

B INPUT indicates that there are eight rows per matrix, with each case in the active dataset
representing one row.

B The total number of cases must be divisible by 8.

SHAPE Subcommand

Use SHAPE to specify the structure of the input data matrix or matrices.

B You can specify one of the three keywords listed below.

131

ALSCAL

B Both SYMMETRIC and ASYMMETRIC refer to square matrix data.

SYMMETRIC

ASYMMETRIC

RECTANGULAR

Example

Symmetric data matrix or matrices. For a symmetric matrix, ALSCAL looks
only at the values below the diagonal. Values on and above the diagonal can be
omitted. This is the default.

Asymmetric data matrix or matrices. The corresponding values in the upper and
lower triangles are not all equal. The diagonal is ignored.

Rectangular data matrix or matrices. The rows and columns represent different
sets of items.

ALSCAL VAR=V1 TO V8 /SHAPE=RECTANGULAR.

B ALSCAL performs a classical MDU analysis, treating the rows and columns as separate sets

of items.

LEVEL Subcommand

LEVEL identifies the level of measurement for the values in the data matrix or matrices. You can
specify one of the keywords defined below.

ORDINAL

INTERVAL(n)

RATIO(n)

NOMINAL

Example

Ordinal-level data. This specification is the default. It treats the data as
ordinal, using Kruskal’s least-squares monotonic transformation (Kruskal,
1964). The analysis is nonmetric. By default, the data are treated as discrete
dissimilarities. Ties in the data remain tied throughout the analysis. To change
the default, specify UNTIE and/or SIMILAR in parentheses. UNTIE treats the
data as continuous and resolves ties in an optimal fashion; SIMILAR treats
the data as similarities. UNTIE and SIMILAR cannot be used with the other
levels of measurement.

Interval-level data. This specification produces a metric analysis of the data
using classical regression techniques. You can specify any integer from 1 to
4 in parentheses for the degree of polynomial transformation to be fit to the
data. The default is 1.

Ratio-level data. This specification produces a metric analysis. You can
specify an integer from 1 to 4 in parentheses for the degree of polynomial
transformation. The default is 1.

Nominal-level data. This specification treats the data as nominal by using a
least-squares categorical transformation (Takane, Young, and de Leeuw, 1977).
This option produces a nonmetric analysis of nominal data. It is useful when
there are few observed categories, when there are many observations in each
category, and when the order of the categories is not known.

ALSCAL VAR=ATLANTA TO TAMPA /LEVEL=INTERVAL (2).

m This example identifies the distances between U.S. cities as interval-level data. The 2 in
parentheses indicates a polynomial transformation with linear and quadratic terms.

132

ALSCAL

CONDITION Subcommand

CONDITION specifies which numbers in a dataset are comparable.

MATRIX Only numbers within each matrix are comparable. If each matrix represents a

different subject, this specification makes comparisons conditional by subject.
This is the default.

ROW Only numbers within the same row are comparable. This specification is

appropriate only for asymmetric or rectangular data. They cannot be used
when ASCAL or AINDS is specified on MODEL.

UNCONDITIONAL All numbers are comparable. Comparisons can be made among any values in

the input matrix or matrices.

Example

ALSCAL VAR=V1l TO V8 /SHAPE=RECTANGULAR /CONDITION=ROW.

B ALSCAL performs a Euclidean MDU analysis conditional on comparisons within rows.

FILE Subcommand

ALSCAL can read proximity data from the active dataset or, with the MATRIX subcommand,
from a matrix data file created by PROXIMITIES or CLUSTER. The FILE subcommand reads
a file containing additional data—an initial or fixed configuration for the coordinates of the
stimuli and/or weights for the matrices being scaled. This file can be created with the OUTFILE
subcommand on ALSCAL or with an SPSS input program.

The minimum specification is the file that contains the configurations and/or weights.

FILE can include additional specifications that define the structure of the configuration/weights
file.

The variables in the configuration/weights file that correspond to successive ALSCAL
dimensions must have the names DIM1, DIM?2, ..., DIMr, where r is the maximum number of
ALSCAL dimensions. The file must also contain the short string variable TYPE to identify
the types of values in all rows.

Values for the variable TYPE _can be CONFIG, ROWCONF, COLCONF, SUBJWGHT, and
STIMWGHT, in that order. Each value can be truncated to the first three letters. Stimulus
coordinate values are specified as CONFIG; row stimulus coordinates, as ROWCONF;
column stimulus coordinates, as COLCONF; and subject and stimulus weights, as
SUBJWGHT and STIMWGHT, respectively. ALSCAL accepts CONFIG and ROWCONF
interchangeably.

ALSCAL skips unneeded types as long as they appear in the file in their proper order.
Generalized weights (GEM) and flattened subject weights (FLA) cannot be initialized or
fixed and will always be skipped. (These weights can be generated by ALSCAL but cannot be
used as input.)

The following list summarizes the optional specifications that can be used on FILE to define
the structure of the configuration/weights file:

Each specification can be further identified with the option INITIAL or FIXED in parentheses.

133

ALSCAL

B INITIAL is the default. INITIAL indicates that the external configuration or weights are to
be used as initial coordinates and are to be modified during each iteration.

B FIXED forces ALSCAL to use the externally defined structure without modification to calculate
the best values for all unfixed portions of the structure.

CONFIG Read stimulus configuration. The configuration/weights file contains initial stimulus
coordinates. Input of this type is appropriate when SHAPE=SYMMETRIC or SHAPE=
ASYMMETRIC, or when the number of variables in a matrix equals the number of
variables on the ALSCAL command. The value of the TYPE variable must be either
CON or ROW for all stimulus coordinates for the configuration.

ROWCONF Read row stimulus configuration. The configuration/weights file contains initial row
stimulus coordinates. This specification is appropriate if SHAPE= RECTANGULAR
and if the number of ROWCONTF rows in the matrix equals the number of rows
specified on the INPUT subcommand (or, if INPUT is omitted, the number of cases
in the active dataset). The value of TYPE _must be either ROW or CON for the
set of coordinates for each row.

COLCONF Read column stimulus configuration. The configuration/weights file contains
initial column stimulus coordinates. This kind of file can be used only if SHAPE=
RECTANGULAR and if the number of COLCONF rows in the matrix equals the
number of variables on the ALSCAL command. The value of 7YPE _must be COL
for the set of coordinates for each column.

SUBJWGHT Read subject (matrix) weights. The configuration/weights file contains subject
weights. The number of observations in a subject-weights matrix must equal the
number of matrices in the proximity file. Subject weights can be used only if the
model is INDSCAL, AINDS, or GEMSCAL. The value of TYPE _for each set of
weights must be SUB.

STIMWGHT Read stimulus weights. The configuration/weights file contains stimulus weights.
The number of observations in the configuration/weights file must equal the number
of matrices in the proximity file. Stimulus weights can be used only if the model is
AINDS or ASCAL. The value of TYPE for each set of weights must be STL.

If the optional specifications for the configuration/weights file are not specified on FILE, ALSCAL
sequentially reads the TYPE values appropriate to the model and shape according to the defaults
in the table below.

Example

ALSCAL VAR=V1 TO V8 /FILE=ONE CON(FIXED) STI(INITIAL).

B ALSCAL reads the configuration/weights file ONE.
® The stimulus coordinates are read as fixed values, and the stimulus weights are read as
initial values.

Table 10-1
Default specifications for the FILE subcommand

Shape Model Default specifications
SYMMETRIC EUCLID CONFIG (or ROWCONF)
INDSCAL CONFIG (or ROWCONF)
SUBJWGHT
GEMSCAL CONFIG (or ROWCONF)
SUBJWGHT
ASYMMETRIC EUCLID CONFIG (or ROWCONF)

134
ALSCAL

Shape Model Default specifications

INDSCAL CONFIG (or ROWCONF)
SUBJWGHT

GEMSCAL CONFIG (or ROWCONF)
SUBJWGHT

ASCAL CONFIG (or ROWCONF)
STIMWGHT

AINDS CONFIG (or ROWCONF)
SUBJWGHT
STIMWGHT

RECTANGULAR EUCLID ROWCONF (or CONFIG)
COLCONF

INDSCAL ROWCONF (or CONFIG)
COLCONF
SUBJWGHT

GEMSCAL ROWCONF (or CONFIG)
COLCONF
SUBJWGHT

MODEL Subcommand

MODEL (alias METHOD) defines the scaling model for the analysis. The only specification is MODEL
(or METHOD) and any one of the five scaling and unfolding model types. EUCLID is the default.

EUCLID Euclidean distance model. This model can be used with any type of proximity matrix
and is the default.
INDSCAL Individual differences (weighted) Euclidean distance model. ALSCAL scales the data

using the weighted individual differences Euclidean distance model (Carroll and
Chang, 1970). This type of analysis can be specified only if the analysis involves more
than one data matrix and more than one dimension is specified on CRITERIA.

ASCAL Asymmetric Euclidean distance model. This model (Young, 1975) can be used only if
SHAPE=ASYMMETRIC and more than one dimension is requested on CRITERIA.

AINDS Asymmetric individual differences Euclidean distance model. This option combines
Young’s asymmetric Euclidean model (Young et al., 1975) with the individual
differences model (Carroll et al., 1970). This model can be used only when
SHAPE=ASYMMETRIC, the analysis involves more than one data matrix, and more than
one dimension is specified on CRITERIA.

GEMSCAL Generalized Euclidean metric individual differences model. The number of directions
for this model is set with the DIRECTIONS option on CRITERIA. The number of
directions specified can be equal to but cannot exceed the group space dimensionality.
By default, the number of directions equals the number of dimensions in the solution.

Example

ALSCAL VARIABLES = V1 TO V6
/SHAPE = ASYMMETRIC
/CONDITION = ROW
/MODEL = GEMSCAL
/CRITERIA = DIM(4) DIRECTIONS(4).

B In this example, the number of directions in the GEMSCAL model is set to 4.

135

CRITERIA Subcommand

ALSCAL

Use CRITERIA to control features of the scaling model and to set convergence criteria for the
solution. You can specify one or more of the following:

CONVERGE(n)

ITER(n)

STRESSMIN(n)

NEGATIVE

CUTOFF(n)

NOULB

DIMENS(min[,max])

DIRECTIONS(n)

TIESTORE(n)

CONSTRAIN

Stop iterations if the change in S-stress is less than n. S-stress is a
goodness-of-fit index. By default, »=0.001. To increase the precision of
a solution, specify a smaller value, for example, 0.0001. To obtain a less
precise solution (perhaps to reduce computing time), specify a larger
value, for example, 0.05. Negative values are not allowed. If n=0, the
algorithm will iterate 30 times unless a value is specified with the ITER
option.

Set the maximum number of iterations to n. The default value is 30. A
higher value will give a more precise solution but will take longer to
compute.

Set the minimum stress value to n. By default, ALSCAL stops iterating
when the value of S-stress is 0.005 or less. STRESSMIN can be assigned
any value from 0 to 1.

Allow negative weights in individual differences models. By default,
ALSCAL does not permit the weights to be negative. Weighted models
include INDSCAL, ASCAL, AINDS, and GEMSCAL. The NEGATIVE option
is ignored if the model is EUCLID.

Set the cutoff value for treating distances as missing to n. By default,
ALSCAL treats all negative similarities (or dissimilarities) as missing and
0 and positive similarities as nonmissing (#=0). Changing the CUTOFF
value causes ALSCAL to treat similarities greater than or equal to that
value as nonmissing. User- and system-missing values are considered
missing regardless of the CUTOFF specification.

Do not estimate upper and lower bounds on missing values. By default,
ALSCAL estimates the upper and lower bounds on missing values in order
to compute the initial configuration. This specification has no effect
during the iterative process, when missing values are ignored.

Set the minimum and maximum number of dimensions in the scaling
solution. By default, ALSCAL calculates a solution with two dimensions.
To obtain solutions for more than two dimensions, specify the minimum
and the maximum number of dimensions in parentheses after DIMENS.
The minimum and maximum can be integers between 2 and 6. A single
value represents both the minimum and the maximum. For example,
DIMENS (3) is equivalent to DIMENS (3, 3). The minimum number of
dimensions can be set to 1 only if MODEL=EUCLID.

Set the number of principal directions in the generalized Euclidean
model to n. This option has no effect for models other than GEMSCAL.
The number of principal directions can be any positive integer between
1 and the number of dimensions specified on the DIMENS option. By
default, the number of directions equals the number of dimensions.

Set the amount of storage needed for ties to n. This option estimates the
amount of storage needed to deal with ties in ordinal data. By default,
the amount of storage is set to 1000 or the number of cells in a matrix,
whichever is smaller. Should this be insufficient, ALSCAL terminates and
displays a message that more space is needed.

Constrain multidimensional unfolding solution. This option can be used
to keep the initial constraints throughout the analysis.

136

ALSCAL
PRINT Subcommand

PRINT requests output not available by default. You can specify the following:

DATA Display input data. The display includes both the initial data and the scaled data for
each subject according to the structure specified on SHAPE.
HEADER Display a header page. The header includes the model, output, algorithmic, and data

options in effect for the analysis.

m Data options listed by PRINT=HEADER include the number of rows and columns, number
of matrices, measurement level, shape of the data matrix, type of data (similarity or
dissimilarity), whether ties are tied or untied, conditionality, and data cutoff value.

B Model options listed by PRINT=HEADER are the type of model specified (EUCLID, INDSCAL,
ASCAL, ATINDS, or GEMSCAL), minimum and maximum dimensionality, and whether or
not negative weights are permitted.

® Output options listed by PRINT=HEADER indicate whether the output includes the header
page and input data, whether ALSCAL plotted configurations and transformations, whether an
output dataset was created, and whether initial stimulus coordinates, initial column stimulus
coordinates, initial subject weights, and initial stimulus weights were computed.

B Algorithmic options listed by PRINT=HEADER include the maximum number of iterations
permitted, the convergence criterion, the maximum S-stress value, whether or not missing
data are estimated by upper and lower bounds, and the amount of storage allotted for ties
in ordinal data.

Example
ALSCAL VAR=ATLANTA TO TAMPA /PRINT=DATA.

® In addition to scaled data, ALSCAL will display initial data.

PLOT Subcommand

PLOT controls the display of plots. The minimum specification is simply PLOT to produce the

defaults.

DEFAULT Default plots. Default plots include plots of stimulus coordinates, matrix weights (if
the model is INDSCAL, AINDS, or GEMSCAL), and stimulus weights (if the model is
AINDS or ASCAL). The default also includes a scatterplot of the linear fit between the
data and the model and, for certain types of data, scatterplots of the nonlinear fit and
the data transformation.

ALL Transformation plots in addition to the default plots. SPSS produces a separate

plot for each subject if CONDITION=MATRIX and a separate plot for each row if
CONDITION=ROW. For interval and ratio data, PLOT=ALL has the same effect as
PLOT=DEFAULT. This option can generate voluminous output, particularly when
CONDITION=ROW.

137

ALSCAL

Example

ALSCAL VAR=V1 TO V8 /INPUT=ROWS(8) /PLOT=ALL.

® This command produces all of the default plots. It also produces a separate plot for each
subject’s data transformation and a plot of ¥/ through V8 in a two-dimensional space for
each subject.

OUTFILE Subcommand

OUTFILE saves coordinate and weight matrices to an SPSS data file. The only specification is
a name for the output file.

® The output data file has an alphanumeric (short string) variable named TYPE that identifies
the kind of values in each row, a numeric variable named DIMENS that specifies the number
of dimensions, a numeric variable named MATNUM that indicates the subject (matrix) to
which each set of coordinates corresponds, and variables named DIM1, DIM?, ..., DIMn that
correspond to the n dimensions in the model.

m The values of any split-file variables are also included in the output file.

B The file created by OUTFILE can be used by subsequent ALSCAL commands as initial data.

The following are the types of configurations and weights that can be included in the output file:

CONFIG Stimulus configuration coordinates.
ROWCONF Row stimulus configuration coordinates.
COLCONF Column stimulus configuration coordinates.
SUBJWGHT Subject (matrix) weights.

FLATWGHT Flattened subject (matrix) weights.
GEMWGHT Generalized weights.

STIMWGHT Stimulus weights.

Only the first three characters of each identifier are written to the variable 7YPE in the file. For
example, CONFIG becomes CON. The structure of the file is determined by the SHAPE and
MODEL subcommands, as shown in the following table.

Table 10-2
Types of configurations and/or weights in output files
Shape Model TYPE_
SYMMETRIC EUCLID CON
INDSCAL CON
SUB
FLA
GEMSCAL CON
SUB
FLA
GEM

ASYMMETRIC EUCLID CON

138

ALSCAL

Shape Model TYPE_

INDSCAL CON
SUB
FLA

GEMSCAL CON
SUB
FLA
GEM

ASCAL CON
STI

AINDS CON
SUB
FLA
STI

RECTANGULAR EUCLID ROW

COL

INDSCAL ROW
COL
SUB
FLA

GEMSCAL ROW
COL
SUB
FLA
GEM

Example

ALSCAL VAR=ATLANTA TO TAMPA /OUTFILE=ONE.

OUTFILE creates the SPSS configuration/weights file ONE from the example of air distances
between cities.

MATRIX Subcommand

MATRIX reads SPSS matrix data files. It can read a matrix written by either PROXIMITIES or
CLUSTER.

Generally, data read by ALSCAL are already in matrix form. If the matrix materials are in the
active dataset, you do not need to use MATRIX to read them. Simply use the VARIABLES
subcommand to indicate the variables (or columns) to be used. However, if the matrix
materials are not in the active dataset, MATRTX must be used to specify the matrix data file
that contains the matrix.

The proximity matrices that ALSCAL reads have ROWTYPE _values of PROX. No additional
statistics should be included with these matrix materials.

ALSCAL ignores unrecognized ROWTYPE _values in the matrix file. In addition, it ignores
variables present in the matrix file that are not specified on the VARIABLES subcommand in
ALSCAL. The order of rows and columns in the matrix is unimportant.

Since ALSCAL does not support case labeling, it ignores values for the /D variable (if present)
in a CLUSTER or PROXIMITIES matrix.

139

ALSCAL

m [f split-file processing was in effect when the matrix was written, the same split file must be
in effect when ALSCAL reads that matrix.

B The specification on MATRIX is the keyword IN and the matrix file in parentheses.

B MATRIX=IN cannot be used unless a active dataset has already been defined. To read an
existing matrix data file at the beginning of a session, first use GET to retrieve the matrix file
and then specify IN(*) on MATRIX.

IN (filename) Read a matrix data file. 1f the matrix data file is the active dataset, specify an
asterisk in parentheses (*). If the matrix data file is another file, specify the filename
in parentheses. A matrix file read from an external file does not replace the active
dataset.

Example

PROXIMITIES V1 TO V8 /ID=NAMEVAR /MATRIX=OUT(¥*).
ALSCAL VAR=CASEl TO CASE10 /MATRIX=IN(*).

B PROXIMITIES uses VI through V8 in the active dataset to generate a matrix file of Euclidean
distances between each pair of cases based on the eight variables. The number of rows and
columns in the resulting matrix equals the number of cases. MATRIX=0UT then replaces the
active dataset with this new matrix data file.

B MATRIX=IN on ALSCAL reads the matrix data file, which is the new active dataset. In this
instance, MATRIX is optional because the matrix materials are in the active dataset.

m [f there were 10 cases in the original active dataset, ALSCAL performs a multidimensional
scaling analysis in two dimensions on CASE through CASE]0.

Example

GET FILE PROXMTX.
ALSCAL VAR=CASEl TO CASE1l0 /MATRIX=IN(*).

B GET retrieves the matrix data file PROXMTX.

B MATRIX=IN specifies an asterisk because the active dataset is the matrix. MATRIX is optional,
however, since the matrix materials are in the active dataset.

Example

GET FILE PRSNNL.
FREQUENCIES VARIABLE=AGE.
ALSCAL VAR=CASEl TO CASE10 /MATRIX=IN(PROXMTX) .

m This example performs a frequencies analysis on the file PRSNNL and then uses a different
file containing matrix data for ALSCAL. The file is an existing matrix data file.

B MATRIX=IN is required because the matrix data file, PROXMTX, is not the active dataset.
PROXMTX does not replace PRSNNL as the active dataset.

140

ALSCAL

Specification of Analyses

The following tables summarize the analyses that can be performed for the major types of
proximity matrices that you can use with ALSCAL, list the specifications needed to produce these
analyses for nonmetric models, and list the specifications for metric models. You can include
additional specifications to control the precision of your analysis with CRITERIA.

Table 10-3
Models for types of matrix input
Matrix | Matrix Model class Single matrix Replications of Two or more
mode |form single matrix individual matrices
Object | Symmetric | Multidimensional CMDS RMDS WMDS(INDSCAL)
by scaling Classical Replicated Weighted
object multidimensional multidimensional multidimensional
scaling scaling scaling
Asymmetric | Multidimensional CMDS(row RMDS(row WMDS(row
single scaling conditional) conditional) conditional)
process Classical row Replicated row Weighted row
conditional conditional multi conditional
multidimensional dimensional scaling | multidimensional
scaling scaling
Asymmetric | Internal asymmetric | CAMDS RAMDS WAMDS
multiple multidimensional Classical asymmetric | Replicated Weighted
process scaling multidimensional asymmetric asymmetric
scaling multidimensional multidimensional
scaling scaling
External asymmetric | CAMDS(external) RAMDS(external) WAMDS(external)
multidimensional Classical external Replicated external Weighted external
scaling asymmetric asymmetric asymmetric
multidimensional multidimensional multidimensional
scaling scaling scaling
Object |Rectangular | Internal unfolding CMDU RMDU WMDU
by Classical internal Replicated internal Weighted internal
attribute multidimensional multidimensional multidimensional
unfolding unfolding unfolding
External unfolding CMDU(external) RMDU(external) WMDU(external)
Classical external Replicated external Weighted external
multidimensional multidimensional multidimensional
unfolding unfolding unfolding
Table 10-4
ALSCAL specifications for nonmetric models
Matrix | Matrix Model class Single matrix Replications of Two or more
mode |form single matrix individual matrices
Object Symmetric Multidimensional ALSCAL VAR= varlist.|ALSCAL VAR= varlist.|ALSCAL VAR= varlist
by scaling /MODEL=INDSCAL .
object
Asymmetric Multidimensional ALSCAL VAR= varlist |ALSCAL VAR= varlist |ALSCAL VAR= varlist
. . / SHAPE=ASYMMETRIC / SHAPE=ASYMMETRIC / SHAPE=ASYMMETRIC
single scaling /CONDITION=ROW. /CONDITION=ROW. /CONDITION=ROW
process /MODEL=INDSCAL .
Asymmetric Internal asymmetric ALSCAL VAR= varlist |ALSCAL VAR= varlist |ALSCAL VAR= varlist
: By ; /SHAPE=ASYMMETRIC | /SHAPE=ASYMMETRIC / SHAPE=ASYMMETRIC
multiple multidimensional /MODEL=ASCAL. /MODEL=ASCAL . /MODEL=ATNDS .
process scaling

141

ALSCAL
Matrix | Matrix Model class Single matrix Replications of Two or more
mode |form single matrix individual matrices
Extemal asymmetric ALSCAL VAR= varlist |ALSCAL VAR= varlist |ALSCAL VAR= varlist
1tidi ional /SHAPE=ASYMMETRIC / SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC
multidimensiona. /MODEL=ASCAL /MODEL=ASCAL /MODEL=AINDS
scaling /FILE=file /FILE=file /FILE=file
COLCONF (FIX) . COLCONF (FIX) . COLCONF (FIX) .
Object Rectangular Intemal unfolding ALSCAL VAR= varlist |ALSCAL VAR= varlist |ALSCAL VAR= varlist
b /SHAPE=REC / SHAPE=REC /SHAPE=REC
y / INP=ROWS /INP=ROWS / INP=ROWS
attribute /CONDITION=ROW. /CONDITION (ROW) . /CONDITION=ROW
/MODEL=INDSCAL.
External unfolding ALSCAL VAR= varlist | ALSCAL VAR= varlist |ALSCAL VAR= varlist
/SHAPE=REC / SHAPE=REC /SHAPE=REC
/INP=ROWS / INP=ROWS / INP=ROWS
/CONDITION=ROW /CONDITION=ROW /CONDITION=ROW
/FILE=file /FILE=file /FILE=file
ROWCONF (FIX) . ROWCONF (FIX) . ROWCONF (FIX)
/MODEL=INDSCAL .
Table 10-5
ALSCAL specifications for metric models
Matrix | Matrix Model class Single matrix Replications of single | Two or more
mode | form matrix individual matrices
Object Symmetric Multidimensional ALSCAL VAR= varlist |ALSCAL VAR= varlist ALSCAL VAR= varlist
b li /LEVEL=INT. /LEVEL=INT. /LEVEL=INT
y scaling /MODEL=INDSCAL.
object
Asymmetric Multidimensional ALSCAL VAR= varlist |ALSCAL VAR= varlist ALSCAL VAR= varlist
inel li /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC
smgle scaling /CONDITION=ROW /CONDITION=ROW /CONDITION=ROW
process /LEVEL=INT. /LEVEL=INT. /LEVEL=INT
/MODEL=INDSCAL .
Asymmetric Intemal asymmetric ALSCAL VAR= varlist |ALSCAL VAR= varlist ALSCAL VAR= varlist
ltipl 1tidi ional /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC
multiple multidimensiona /LEVEL=INT /LEVEL=INT /LEVEL=INT
process scaling /MODEL=ASCAL . /MODEL=ASCAL. /MODEL=ATNDS .
External asymmetric ALSCAL VAR= varlist |ALSCAL VAR= varlist |ALSCAL VAR= varlist
ltidi ional /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC
multidimensiona /LEVEL=TNT /LEVEL=INT /LEVEL=TNT
scaling /MODEL=ASCAL /MODEL=ASCAL /MODEL=AINDS
/FILE=file /FILE=file /FILE=file
COLCONF (FIX) . COLCONF (FIX) . COLCONF (FIX) .
Object Rectangular Intemal unfolding ALSCAL VAR= varlist |ALSCAL VAR= varlist ALSCAL VAR= varlist
b /SHAPE=REC / SHAPE=REC /SHAPE=REC
y . / INP=ROWS /INP=ROWS / INP=ROWS
attribute /CONDITION=ROW /CONDITION=ROW /CONDITION=ROW
/LEVEL=INT. /LEVEL=INT. /LEVEL=INT
/MODEL=INDSCAL.
External unfolding ALSCAL VAR= varlist |ALSCAL VAR= varlist |ALSCAL VAR= varlist
/SHAPE=REC / SHAPE=REC /SHAPE=REC
/ INP=ROWS /INP=ROWS / INP=ROWS
/CONDITION=ROW /CONDITION=ROW /CONDITION=ROW
/LEVEL=INT /LEVEL=INT /LEVEL=INT
/FILE=file /FILE=file /FILE=file
ROWCONF (FIX) . ROWCONF (FIX) . ROWCONF (FIX)
/MODEL=INDSCAL.
References

Carroll, J. D., and J. J. Chang. 1970. Analysis of individual differences in multidimensional
scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35,

238-319.

Johnson, R., and D. W. Wichern. 1982. Applied multivariate statistical analysis. Englewood
Cliffs, N.J.: Prentice-Hall.

142

ALSCAL

Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29, 1-28.

Kruskal, J. B. 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika,
29, 115-129.

Takane, Y., F. W. Young, and J. de Leeuw. 1977. Nonmetric individual differences
multidimensional scaling: An alternating least squares method with optimal scaling features.
Psychometrika, 42, 7-67.

Young, F. W. 1975. An asymmetric Euclidean model for multiprocess asymmetric data. In:
Proceedings of U.S.—Japan Seminar on Multidimensional Scaling, San Diego: .

ANACOR

ANACOR is available in the Categories option.

ANACOR TABLE={row var (min, max) BY column var (min, max)}
{ALL (# of rows, # of columns) }

[/DIMENSION={2*%* 11
{value}

[/NORMALIZATION={CANONICAL™**}]
{PRINCIPAL }
{RPRINCIPAL }
{CPRINCIPAL }
{value }

[/VARIANCES=[SINGULAR] [ROWS] [COLUMNS]]

[/PRINT=[TABLE**] [PROFILES] [SCORES**] [CONTRIBUTIONS**]
[DEFAULT] [PERMUTATION] [NONE]]

[/PLOT=[NDIM= ({1, 2%** 11
{value, wvalue}
{ALL, MAX }
[ROWS** [(nn)]] [COLUMNS** [(nn)]] [DEFAULT[(n)]]
[TRROWS] [TRCOLUMNS] [JOINT[(n)]] [NONE]]
[/MATRIX OUT=[SCORE ({* })] [VARIANCE ({* 11
{'savfile'|'dataset'} {'savfile'|'dataset'}

**Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6).

Overview

ANACOR performs correspondence analysis, which is an isotropic graphical representation of the
relationships between the rows and columns of a two-way table.

Options

Number of Dimensions. You can specify how many dimensions ANACOR should compute.

Method of Normalization. You can specify one of five different methods for normalizing the row
and column scores.

Computation of Variances and Correlations. You can request computation of variances and
correlations for singular values, row scores, or column scores.

Data Input. You can analyze the usual individual casewise data or aggregated data from table cells.

143

144

ANACOR
Display Output. You can control which statistics are displayed and plotted. You can also control
how many value-label characters are used on the plots.
Writing Matrices. You can write matrix data files containing row and column scores and variances
for use in further analyses.
Basic Specification
m The basic specification is ANACOR and the TABLE subcommand. By default, ANACOR
computes a two-dimensional solution, displays the TABLE, SCORES, and CONTRIBUTIONS
statistics, and plots the row scores and column scores of the first two dimensions.
Subcommand Order
® Subcommands can appear in any order.
Operations
m [f a subcommand is specified more than once, only the last occurrence is executed.
Limitations
m [f the data within table cells contains negative values. ANACOR treats those values as 0.
Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
/PRINT=SCORES CONTRIBUTIONS
/PLOT=ROWS COLUMNS.

m Two variables, MENTAL and SES, are specified on the TABLE subcommand. MENTAL has
values ranging from 1 to 4, and SES has values ranging from 1 to 6.

B The row and column scores and the contribution of each row and column to the inertia of
each dimension are displayed.

m Two plots are produced. The first one plots the first two dimensions of row scores, and the
second one plots the first two dimensions of column scores.

TABLE Subcommand

TABLE specifies the row and column variables, along with their value ranges for individual
casewise data. For table data, TABLE specifies the keyword ALL and the number of rows and
columns.

m The TABLE subcommand is required.

Casewise Data

m Each variable is followed by a value range in parentheses. The value range consists of the
variable’s minimum value, a comma, and the variable’s maximum value.

B Values outside of the specified range are not included in the analysis.

145

ANACOR

m Values do not have to be sequential. Empty categories receive scores of 0 and do not affect
the rest of the computations.
Example

DATA LIST FREE/VAR1 VAR2.
BEGIN DATA

AP WoooixbdWwWoyWw
WNDNWWWNDNDRE -

END DATA.
ANACOR TABLE=VAR1(3,6) BY VAR2(1,3).

B DATA LIST defines two variables, VARI and VAR2.
B VARI has three levels, coded 3, 4, and 6, while VAR?2 also has three levels, coded 1, 2, and 3.

m Because a range of (3,6) is specified for VAR, ANACOR defines four categories, coded 3, 4,
5, and 6. The empty category, 5, for which there is no data, receives zeros for all statistics
but does not affect the analysis.

Table Data

B The cells of a table can be read and analyzed directly by using the keyword ALL after TABLE.

® The columns of the input table must be specified as variables on the DATA LIST command.
Only columns are defined, not rows.

m ALL is followed by the number of rows in the table, a comma, and the number of columns in
the table, all enclosed in parentheses.

m [f you want to analyze only a subset of the table, the specified number of rows and columns
can be smaller than the actual number of rows and columns.

m The variables (columns of the table) are treated as the column categories, and the cases (rows
of the table) are treated as the row categories.

® Rows cannot be labeled when you specify TABLE=ALL. If labels in your output are important,
use the WETIGHT command method to enter your data (see Analyzing Aggregated Data on p.
150).

Example

DATA LIST /COL0O1 TO COLO7 1-21.
BEGIN DATA

50 19 26 8 18 6 2

16 40 34 18 31 8 3

12 35 65 66123 23 21

11 20 58110223 64 32

14 36114185714258189

0 6 19 40179143 71

END DATA.

146

ANACOR

ANACOR TABLE=ALL(6,7) .

DATA LIST defines the seven columns of the table as the variables.

The TABLE=ALL specification indicates that the data are the cells of a table. The (6,7)
specification indicates that there are six rows and seven columns.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want ANACOR to compute.

If you do not specify the DIMENSION subcommand, ANACOR computes two dimensions.
DIMENSION is followed by an integer indicating the number of dimensions.

In general, you should choose as few dimensions as needed to explain most of the variation.
The minimum number of dimensions that can be specified is 1. The maximum number of
dimensions that can be specified is equal to the number of levels of the variable with the least
number of levels, minus 1. For example, in a table where one variable has five levels and the
other has four levels, the maximum number of dimensions that can be specified is (4 — 1), or
3. Empty categories (categories with no data, all zeros, or all missing data) are not counted
toward the number of levels of a variable.

If more than the maximum allowed number of dimensions is specified, ANACOR reduces
the number of dimensions to the maximum.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five methods for normalizing the row and
column scores. Only the scores and variances are affected; contributions and profiles are not
changed.

The following keywords are available:

CANONICAL For each dimension, rows are the weighted average of columns divided by the

matching singular value, and columns are the weighted average of rows divided
by the matching singular value. This is the default if the NORMALIZATION
subcommand is not specified. DEFAULT is an alias for CANONTICAL. Use this
normalization method if you are primarily interested in differences or similarities
between variables.

PRINCIPAL Distances between row points and column points are approximations of

chi-square distances. The distances represent the distance between the row

or column and its corresponding average row or column profile. Use this
normalization method if you want to examine both differences between
categories of the row variable and differences between categories of the column
variable (but not differences between variables).

RPRINCIPAL Distances between row points are approximations of chi-square distances. This

method maximizes distances between row points. This is useful when you are
primarily interested in differences or similarities between categories of the row
variable.

CPRINCIPAL Distances between column points are approximations of chi-square distances.

This method maximizes distances between column points. This is useful when
you are primarily interested in differences or similarities between categories
of the column variable.

147

ANACOR

The fifth method has no keyword. Instead, any value in the range —2 to +2 is specified after
NORMALIZATION. A value of 1 is equal to the RPRINCIPAL method, a value of 0 is equal to
CANONICAL, and a value of —1 is equal to the CPRINCIPAL method. The inertia is spread over
both row and column scores. This method is useful for interpreting joint plots.

VARIANCES Subcommand

Use VARIANCES to display variances and correlations for the singular values, the row scores,
and/or the column scores. If VARIANCES is not specified, variances and correlations are not
included in the output.

The following keywords are available:

SINGULAR Variances and correlations of the singular values.
ROWS Variances and correlations of the row scores.
COLUMNS Variances and correlations of the column scores.

PRINT Subcommand

Use PRINT to control which correspondence statistics are displayed. If PRINT is not specified,
displayed statistics include the numbers of rows and columns, all nontrivial singular values,
proportions of inertia, and the cumulative proportion of inertia that is accounted for.

The following keywords are available:

TABLE A crosstabulation of the input variables showing row and column marginals.

PROFILES The row and column profiles. PRINT=PROFILES is analogous to the
CELLS=ROW COLUMN subcommand in CROSSTABS.

SCORES The marginal proportions and scores of each row and column.

CONTRIBUTIONS The contribution of each row and column to the inertia of each dimension,
and the proportion of distance to the origin that is accounted for in each
dimension.

PERMUTATION The original table permuted according to the scores of the rows and
columns for each dimension.

NONE No output other than the singular values.

DEFAULT TABLE, SCORES, and CONTRIBUTIONS. These statistics are displayed if

you omit the PRINT subcommand.

PLOT Subcommand

Use pLOT to produce plots of the row scores, column scores, and row and column scores, as well
as to produce plots of transformations of the row scores and transformations of the column scores.
If pLOT is not specified, plots are produced for the row scores in the first two dimensions and
the column scores in the first two dimensions.

148

ANACOR

The following keywords are available:

TRROWS Plot of transformations of the row category values into row scores.

TRCOLUMNS Plot of transformations of the column category values into column scores.

ROWS Plot of row scores.

COLUMNS Plot of column scores.

JOINT A combined plot of the row and column scores. This plot is not available when
NORMALIZATION=PRINCIPAL.

NONE No plots.

DEFAULT ROWS and COLUMNS.

The keywords ROWS, COLUMNS, JOINT, and DEFAULT can be followed by an integer value in
parentheses to indicate how many characters of the value label are to be used on the plot. The
value can range from 1 to 20; the default is 3. Spaces between words count as characters.

TRROWS and TRCOLUMNS plots use the full value labels up to 20 characters.
If a label is missing for any value, the actual values are used for all values of that variable.
Value labels should be unique.

The first letter of a label on a plot marks the place of the actual coordinate. Be careful that
multiple-word labels are not interpreted as multiple points on a plot.

In addition to the plot keywords, the following keyword can be specified:

NDIM Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses. If NDIM

is not specified, plots are produced for dimension 1 by dimension 2.

m The first value indicates the dimension that is plotted against all higher dimensions. This
value can be any integer from 1 to the number of dimensions minus 1.

m The second value indicates the highest dimension to be used in plotting the dimension pairs.
This value can be any integer from 2 to the number of dimensions.

m Keyword ALL can be used instead of the first value to indicate that all dimensions are paired
with higher dimensions.

m Keyword MAX can be used instead of the second value to indicate that plots should be
produced up to, and including, the highest dimension fit by the procedure.

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
/PLOT NDIM(1,3) JOINT(5).

The NDIM (1, 3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

JOINT requests combined plots of row and column scores. The (5) specification indicates
that the first five characters of the value labels are to be used on the plots.

149
ANACOR

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
/PLOT NDIM(ALL,3) JOINT(5).

m This plot is the same as above except for the ALL specification following NDIM, which
indicates that all possible pairs up to the second value should be plotted. Therefore, JOINT
plots will be produced for dimension 1 versus dimension 2, dimension 2 versus dimension 3,
and dimension 1 versus dimension 3.

MATRIX Subcommand

Use MATRIX to write row and column scores and variances to matrix data files.

MATRIX is followed by keyword ouT, an equals sign, and one or both of the following keywords:

SCORE (‘file’|’dataset’) Write row and column scores to a matrix data file.

VARIANCE (‘file’|’dataset’) Write variances to a matrix data file.

B You can specify the file with either an asterisk (*), to replace the active dataset , a quoted
file specification or a previously declared dataset name (DATASET DECLARE command),
enclosed in parentheses.

®m If you specify both SCORE and VARIANCE on the same MATRIX subcommand, you must
specify two different files.

The variables in the SCORE matrix data file and their values are:

ROWTYPE _ String variable containing the value ROW for all rows and COLUMN for
all columns.

LEVEL String variable containing the values (or value labels, if present) of each
original variable.

VARNAME _ String variable containing the original variable names.

DIM1...DIMn Numeric variables containing the row and column scores for each dimension.

Each variable is labeled DIMn, where n represents the dimension number.

The variables in the VARIANCE matrix data file and their values are:

ROWTYPE _ String variable containing the value COV for all cases in the file.

SCORE String variable containing the values SINGULAR, ROW, and COLUMN.

LEVEL String variable containing the system-missing value for SINGULAR and the
sequential row or column number for ROW and COLUMN.

VARNAME _ String variable containing the dimension number.

DIM1...DIMn Numeric variables containing the covariances for each dimension. Each

variable is labeled DIMn, where n represents the dimension number.

150

ANACOR

Analyzing Aggregated Data

To analyze aggregated data, such as data from a crosstabulation where cell counts are available
but the original raw data are not, you can use the TABLE=ALL option or the WEIGHT command
before ANACOR.

Example

To analyze a 3 x 3 table, such as the table that is shown below, you could use these commands:

DATA LIST FREE/ BIRTHORD ANXIETY COUNT.
BEGIN DATA

WWWNDNNDRE -
WP WNEFE WN R
[\S]

o

END DATA.
WEIGHT BY COUNT.
ANACOR TABLE=BIRTHORD (1,3) BY ANXIETY (1,3).

® The WEIGHT command weights each case by the value of COUNT, as if there are 48 subjects
with BIRTHORD=1 and ANXIETY=1, 27 subjects with BIRTHORD=1 and ANXIETY=2,
and so on.

ANACOR can then be used to analyze the data.

If any table cell value equals 0, the WEIGHT command issues a warning, but the ANACOR
analysis is done correctly.

m The table cell values (the WEIGHT values) cannot be negative. WEIGHT changes
system-missing values and negative values to 0.

m For large aggregated tables, you can use the TABLE=ALL option or the transformation
language to enter the table “as is.”

Table 11-1
3 x 3 table
Anxiety
High Med Low
Birth order | First 48 27 22
Second 33 20 39
Other 29 42 47

ANOVA

ANOVA VARIABLES= varlist BY varlist(min,max)...varlist (min,max)
[WITH varlist] [/VARIABLES=...]

[/COVARIATES={FIRST**}]
{WITH }
{AFTER }

[/MAXORDERS={ALL** }]
{n }
{NONE }

[/METHOD= {UNIQUE* * 11

{EXPERIMENTAL}
{HIERARCHICAL}

[/STATISTICS=[MCA] [REGt] [MEAN] [ALL] [NONE]]
[/MISSING={EXCLUDE**}]
{INCLUDE }

**Default if the subcommand is omitted.

TREG (table of regression coefficients) is displayed only if the design is relevant.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

ANOVA VARIABLES=PRESTIGE BY REGION(1l,9) SEX,RACE(1,2)
/MAXORDERS=2
/STATISTICS=MEAN.

Overview

ANOVA performs analysis of variance for factorial designs. The default is the full factorial model
if there are five or fewer factors. Analysis of variance tests the hypothesis that the group means
of the dependent variable are equal. The dependent variable is interval-level, and one or more
categorical variables define the groups. These categorical variables are termed factors. ANOVA
also allows you to include continuous explanatory variables, termed covariates. Other procedures
that perform analysis of variance are ONEWAY, SUMMARIZE, and GLM. To perform a comparison
of two means, use TTEST.

Options

Specifying Covariates. You can introduce covariates into the model using the WITH keyword
on the VARTABLES subcommand.

Order of Entry of Covariates. By default, covariates are processed before main effects for factors.
You can process covariates with or after main effects for factors using the COVARIATES
subcommand.

151

152

ANOVA

Suppressing Interaction Effects. You can suppress the effects of various orders of interaction
using the MAXORDERS subcommand.

Methods for Decomposing Sums of Squares. By default, the regression approach (keyword
UNTQUE) is used. You can request the classic experimental or hierarchical approach using the
METHOD subcommand.

Statistical Display. Using the STATTSTICS subcommand, you can request means and counts for
each dependent variable for groups defined by each factor and each combination of factors up
to the fifth level. You also can request unstandardized regression coefficients for covariates
and multiple classification analysis (MCA) results, which include the MCA table, the Factor
Summary table, and the Model Goodness of Fit table. The MCA table shows treatment effects
as deviations from the grand mean and includes a listing of unadjusted category effects for each
factor, category effects adjusted for other factors, and category effects adjusted for all factors
and covariates. The Factor Summary table displays eta and beta values. The Goodness of Fit
table shows R and R2 for each model.

Basic Specification

B The basic specification is a single VARIABLES subcommand with an analysis list. The
minimum analysis list specifies a list of dependent variables, the keyword BY, a list of factor
variables, and the minimum and maximum integer values of the factors in parentheses.

m By default, the model includes all interaction terms up to five-way interactions. The sums
of squares are decomposed using the regression approach, in which all effects are assessed
simultaneously, with each effect adjusted for all other effects in the model. A case that has a
missing value for any variable in an analysis list is omitted from the analysis.

Subcommand Order

® The subcommands can be named in any order.

Operations

A separate analysis of variance is performed for each dependent variable in an analysis list,
using the same factors and covariates.

Limitations

A maximum of 5 analysis lists.

A maximum of 5 dependent variables per analysis list.
A maximum of 10 factor variables per analysis list.

A maximum of 10 covariates per analysis list.

A maximum of 5 interaction levels.

A maximum of 25 value labels per variable displayed in the MCA table.

The combined number of categories for all factors in an analysis list plus the number of
covariates must be less than the sample size.

153

ANOVA

Examples

ANOVA VARIABLES=PRESTIGE BY REGION(1l,9) SEX, RACE(1l,2)

/MAXORDERS=2
/STATISTICS=MEAN.

VARIABLES specifies a three-way analysis of variance—PRESTIGE by REGION, SEX,
and RACE.

The variables SEX and RACE each have two categories, with values 1 and 2 included in the
analysis. REGION has nine categories, valued 1 through 9.

MAXORDERS examines interaction effects up to and including the second order. All three-way
interaction terms are pooled into the error sum of squares.

STATISTICS requests a table of means of PRESTIGE within the combined categories of
REGION, SEX, and RACE.

Example: Specifying Multiple Analyses

ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX,RACE(1,2)

/RINCOME BY SEX,RACE(1,2).

ANOVA specifies a three-way analysis of variance of PRESTIGE by REGION, SEX, and
RACE, and a two-way analysis of variance of RINCOME by SEX and RACE.

VARIABLES Subcommand

VARIABLES specifies the analysis list.

More than one design can be specified on the same ANOVA command by separating the
analysis lists with a slash.

Variables named before the keyword BY are dependent variables. Value ranges are not
specified for dependent variables.

Variables named after BY are factor (independent) variables.

Every factor variable must have a value range indicating its minimum and maximum values.
The values must be separated by a space or a comma and enclosed in parentheses.

Factor variables must have integer values. Non-integer values for factors are truncated.
Cases with values outside the range specified for a factor are excluded from the analysis.

If two or more factors have the same value range, you can specify the value range once
following the last factor to which it applies. You can specify a single range that encompasses
the ranges of all factors on the list. For example, if you have two factors, one with values

1 and 2 and the other with values 1 through 4, you can specify the range for both as 1,4.
However, this may reduce performance and cause memory problems if the specified range is
larger than some of the actual ranges.

Variables named after the keyword WITH are covariates.

Each analysis list can include only one BY and one WITH keyword.

154

ANOVA

COVARIATES Subcommand

COVARIATES specifies the order for assessing blocks of covariates and factor main effects.

B The order of entry is irrelevant when METHOD=UNIQUE.

FIRST Process covariates before factor main effects. This is the default.
WITH Process covariates concurrently with factor main effects.
AFTER Process covariates after factor main effects.

MAXORDERS Subcommand

MAXORDERS suppresses the effects of various orders of interaction.

ALL Examine all interaction effects up to and including the fifth order. This is the default.

n Examine all interaction effects up to and including the nth order. For example,
MAXORDERS=3 examines all interaction effects up to and including the third order. All
higher-order interaction sums of squares are pooled into the error term.

NONE Delete all interaction terms from the model. All interaction sums of squares are pooled
into the error sum of squares. Only main and covariate effects appear in the ANOVA table.

METHOD Subcommand

METHOD controls the method for decomposing sums of squares.

UNIQUE Regression approach. UNIQUE overrides any keywords on the
COVARIATES subcommand. All effects are assessed simultaneously
for their partial contribution. The MCA and MEAN specifications on
the STATISTICS subcommand are not available with the regression
approach. This is the default if METHOD is omitted.

EXPERIMENTAL Classic experimental approach. Covariates, main effects, and ascending
orders of interaction are assessed separately in that order.
HIERARCHICAL Hierarchical approach.
Regression Approach

All effects are assessed simultaneously, with each effect adjusted for all other effects in the
model. This is the default when the METHOD subcommand is omitted. Since MCA tables cannot
be produced when the regression approach is used, specifying MCA or ALL on STATISTICS
with the default method triggers a warning.

155
ANOVA

Some restrictions apply to the use of the regression approach:

m The lowest specified categories of all the independent variables must have a marginal
frequency of at least 1, since the lowest specified category is used as the reference category.
If this rule is violated, no ANOVA table is produced and a message identifying the first
offending variable is displayed.

® Given an n-way crosstabulation of the independent variables, there must be no empty cells
defined by the lowest specified category of any of the independent variables. If this restriction
is violated, one or more levels of interaction effects are suppressed and a warning message
is issued. However, this constraint does not apply to categories defined for an independent
variable but not occurring in the data. For example, given two independent variables, each
with categories of 1, 2, and 4, the (1,1), (1,2), (1,4), (2,1), and (4,1) cells must not be empty.
The (1,3) and (3,1) cells will be empty but the restriction on empty cells will not be violated.
The (2,2), (2,4), (4,2), and (4,4) cells may be empty, although the degrees of freedom will be
reduced accordingly.

To comply with these restrictions, specify precisely the lowest non-empty category of each
independent variable. Specifying a value range of (0,9) for a variable that actually has values of 1
through 9 results in an error, and no ANOVA table is produced.

Classic Experimental Approach

Each type of effect is assessed separately in the following order (unless WITH or AFTER is
specified on the COVARTIATES subcommand):

Effects of covariates

Main effects of factors
Two-way interaction effects
Three-way interaction effects

Four-way interaction effects

Five-way interaction effects

The effects within each type are adjusted for all other effects of that type and also for the effects
of all prior types. (See Table 12-1 on p. 156.)

Hierarchical Approach

The hierarchical approach differs from the classic experimental approach only in the way it
handles covariate and factor main effects. In the hierarchical approach, factor main effects and
covariate effects are assessed hierarchically—factor main effects are adjusted only for the factor
main effects already assessed, and covariate effects are adjusted only for the covariates already
assessed. (See Table 12-1 on p. 156.) The order in which factors are listed on the ANOvA
command determines the order in which they are assessed.

156

ANOVA

Example

The following analysis list specifies three factor variables named A4, B, and C:

ANOVA VARIABLES=Y BY A,B,C(0,3).

The following table summarizes the three methods for decomposing sums of squares for this
example.

With the default regression approach, each factor or interaction is assessed with all other

factors and interactions held constant.

With the classic experimental approach, each main effect is assessed with the two other main
effects held constant, and two-way interactions are assessed with all main effects and other
two-way interactions held constant. The three-way interaction is assessed with all main
effects and two-way interactions held constant.

With the hierarchical approach, the factor main effects A, B, and C are assessed with all prior
main effects held constant. The order in which the factors and covariates are listed on the
ANOVA command determines the order in which they are assessed in the hierarchical analysis.
The interaction effects are assessed the same way as in the experimental approach.

Table 12-1
Terms adjusted for under each option

Effect Regression Experimental Hierarchical
(UNIQUE)

A All others B.,C None

B All others A,C A

C All others A,B A,B

AB All others A,B,C,AC,BC A,B,C,AC,BC

AC All others A,B,C,AB,BC A,B,C,AB,BC

BC All others A,B,C,AB,AC A,B,C,AB,AC

ABC All others A,B,C,AB,AC,BC A,B,C,AB,AC,BC

Summary of Analysis Methods

The following table describes the results obtained with various combinations of methods for
controlling the entry of covariates and decomposing the sums of squares.

157

Table 12-2

Combinations of COVARIATES and METHOD subcommands

ANOVA

Method

Assessments between
types of effects

Assessments within the same type of
effect

METHOD=UNIQUE

Covariates, Factors,
and Interactions

Covariates: adjust for factors,
interactions, and all other covariates

simultaneousl . .
Y Factors: adjust for covariates,
interactions, and all other factors
Interactions: adjust for covariates,
factors, and all other interactions
METHOD=EXPERIMENTAL Covariates Covariates: adjust for all other covariates
then Factors: adjust for covariates and all
other factors
Factors
th Interactions: adjust for covariates,
en factors, and all other interactions of the
Interactions same and lower orders
METHOD=HIERARCHICAL Covariates Covariates: adjust for covariates that are
receding in the list
then P &
Fact Factors: adjust for covariates and factors
actors preceding in the list
then Interactions: adjust for covariates,
Interactions factors, and all other interactions of the

same and lower orders

COVARIATES=WITH
and

METHOD=EXPERIMENTAL

Factors and Covariates
concurrently

then

Interactions

Covariates: adjust for factors and all
other covariates

Factors: adjust for covariates and all
other factors

Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

COVARIATES=WITH

Factors and Covariates

Factors: adjust only for preceding factors

concurrentl . .
and Y Covariates: adjust for factors and
METHOD=HIERARCHTCAL then preceding covariates
Interactions Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders
COVARIATES=AFTER Factors Factors: adjust for all other factors
and then Covariates: adjust for factors and all
METHOD=EXPERIMENTAL Covariates other covariates
th Interactions: adjust for covariates,
en factors, and all other interactions of the
Interactions same and lower orders
COVARIATES=AFTER Factors Factors: adjust only for preceding factors
and then Covariates: adjust factors and preceding
METHOD=HIERARCHICAL Covariates covariates
Interactions: adjust for covariates,
then

Interactions

factors, and all other interactions of the
same and lower orders

158

ANOVA

STATISTICS Subcommand

STATISTICS requests additional statistics. STATISTICS can be specified by itself or with
one or more keywords.

B [f you specify STATISTICS without keywords, ANOVA calculates MEAN and REG (each
defined below).

m [f you specify a keyword or keywords on the STATISTICS subcommand, ANOVA calculates
only the additional statistics you request.

MEAN Means and counts table. This statistic is not available when METHOD is omitted or
when METHOD=UNIQUE. See “Cell Means” below.
REG Unstandardized regression coefficients. Displays unstandardized regression

coefficients for the covariates. For more information, see Regression Coefficients for
the Covariates on p. 158.

MCA Multiple classification analysis. The MCA, the Factor Summary, and the Goodness of
Fit tables are not produced when METHOD is omitted or when METHOD=UNIQUE. For
more information, see Multiple Classification Analysis on p. 158.

ALL Means and counts table, unstandardized regression coefficients, and multiple
classification analysis.

NONE No additional statistics. ANOVA calculates only the statistics needed for analysis of
variance. This is the default if the STATISTICS subcommand is omitted.

Cell Means

STATISTICS=MEAN displays the Cell Means table.
m This statistic is not available with METHOD=UNIQUE.

m The Cell Means table shows the means and counts of each dependent variable for each cell

defined by the factors and combinations of factors. Dependent variables and factors appear in
their order on the VARTABLES subcommand.

B [f MAXORDERS is used to suppress higher-order interactions, cell means corresponding to
suppressed interaction terms are not displayed.

® The means displayed are the observed means in each cell, and they are produced only for
dependent variables, not for covariates.

Regression Coefficients for the Covariates

STATISTICS=REG requests the unstandardized regression coefficients for the covariates.

m The regression coefficients are computed at the point where the covariates are entered into

the equation. Thus, their values depend on the type of design specified by the COVARIATES
or METHOD subcommand.

m The coefficients are displayed in the ANOVA table.

Multiple Classification Analysis

STATISTICS=MCA displays the MCA, the Factor Summary, and the Model Goodness of Fit tables.

159
ANOVA

m The MCA table presents counts, predicted means, and deviations of predicted means from the
grand mean for each level of each factor. The predicted and deviation means each appear
in up to three forms: unadjusted, adjusted for other factors, and adjusted for other factors
and covariates.

® The Factor Summary table displays the correlation ratio (eta) with the unadjusted deviations
(the square of eta indicates the proportion of variance explained by all categories of the
factor), a partial beta equivalent to the standardized partial regression coefficient that would
be obtained by assigning the unadjusted deviations to each factor category and regressing the
dependent variable on the resulting variables, and the parallel partial betas from a regression
that includes covariates in addition to the factors.

The Model Goodness of Fit table shows R and R2 for each model.

The tables cannot be produced if METHOD is omitted or if METHOD=UNIQUE. When produced,
the MCA table does not display the values adjusted for factors if COVARIATES is omitted,

if COVARIATES=FIRST, or if COVARIATES=WITH and METHOD=EXPERIMENTAL. A full
MCA table is produced only if METHOD=HIERARCHICAL or if METHOD=EXPERIMENTAL
and COVARIATES=AFTER.

MISSING Subcommand

By default, a case that has a missing value for any variable named in the analysis list is deleted for
all analyses specified by that list. Use MISSING to include cases with user-missing data.

EXCLUDE Exclude cases with missing data. This is the default.
INCLUDE Include cases with user-defined missing data.
References

Andrews, F., J. Morgan, J. Sonquist, and L. Klein. 1973. Multiple classification analysis, 2nd ed.
Ann Arbor: University of Michigan.

APPLY DICTIONARY

APPLY DICTIONARY FROM [{'savfile'|'dataset'}]
* }

[/SOURCE VARIABLES = varlist]

[/TARGET VARIABLES = varlist]

[/NEWVARS]
[/FILEINFO [ATTRIBUTES = [{REPLACE}]]
{MERGE }

[DOCUMENTS = [{REPLACE}]]]
{MERGE }

[FILELABEL]

[MRSETS = [{REPLACE}]]

{MERGE }
[VARSETS = [{REPLACE}]]
{MERGE }
[WEIGHT**]
[ALL]
[/VARINFO [ALIGNMENT**]]

[ATTRIBUTES = [{REPLACE}]]
{MERGE }

[FORMATS* *]

[LEVEL* *]

[MISSING**]

[VALLABELS = [{REPLACE**}]]
{MERGE }

[VARLABEL* *]

[WIDTH**]

[ALL]

**Default if the subcommand is not specified.

This command takes effect immediately. It does not read the active dataset or execute pending
transformations. For more information, see Command Order on p. 21.

Example

APPLY DICTIONARY FROM = 'lastmonth.sav'.

160

161
APPLY DICTIONARY

Overview

APPLY DICTIONARY can apply variable and file-based dictionary information from an external
SPSS-format data file or open dataset to the current active dataset. Variable-based dictionary
information in the current active dataset can be applied to other variables in the current active
dataset.

m The applied variable information includes variable and value labels, missing-value flags,
alignments, variable print and write formats, measurement levels, and widths.

m The applied file information includes variable and multiple response sets, documents, file
label, and weight.

B APPLY DICTIONARY can apply information selectively to variables and can apply selective
file-based dictionary information.

m Individual variable attributes can be applied to individual and multiple variables of the same
type (strings of the same character length or numeric).

B APPLY DICTIONARY can add new variables but cannot remove variables, change data, or
change a variable’s name or type.

® Undefined (empty) attributes in the source dataset do not overwrite defined attributes in the
active dataset.

Basic Specification

The basic specification is the FROM subcommand and the name of an SPSS-format data file or
open dataset. The file specification should be enclosed in quotation marks.

Subcommand Order

The subcommands can be specified in any order.

Syntax Rules

m The file containing the dictionary information to be applied (the source file) must be an
SPSS-format data file, the active dataset, or a defined dataset.

m The file to which the dictionary information is applied (the target file) must be the active
dataset. You cannot specify another file.

m [f a subcommand is issued more than once, APPLY DICTIONARY will ignore all but the
last instance of the subcommand.

m Equals signs displayed in the syntax chart and in the examples presented here are required
elements; they are not optional.

Matching Variable Type

APPLY DICTIONARY considers two variables to have a matching variable type if:
® Both variables are numeric. This includes all numeric, currency, and date formats.

® Both variables are string (alphanumeric).

162

APPLY DICTIONARY

FROM Subcommand

FROM specifies an SPSS-format data file, an open dataset or the active dataset as the source file
whose dictionary information is to be applied to the active dataset.

B FROM is required.

® Only one SPSS-format data file or open dataset(including the active dataset) can be specified
on FROM.

m The file specification should be enclosed in quotation marks.

B The active dataset can be specified in the FROM subcommand by using an asterisk (*) as
the value. File-based dictionary information (FILEINFO subcommand) is ignored when
the active dataset is used as the source file.

Example

APPLY DICTIONARY FROM "lastmonth.sav".

This will apply variable information from /astmonth.sav to matching variables in the active
dataset.

The default variable information applied from the source file includes variable labels, value
labels, missing values, level of measurement, alignment, column width (for Data Editor
display), and print and write formats.

If weighting is on in the source dataset and a matching weight variable exists in the active
(target) dataset, weighting by that variable is turned on in the active dataset. No other file
information (documents, file label, multiple response sets) from the source file is applied

to the active dataset.

NEWVARS Subcommand

NEWVARS is required to create new variables in the active (target) dataset.

Example

APPLY DICTIONARY FROM “lastmonth.sav”

/NEWVARS.

For a new, blank active dataset, all variables with all of their variable definition attributes

are copied from the source dataset, creating a new dataset with an identical set of variables
(but no data values).

For an active dataset that contains any variables, variable definition attributes from the source
dataset are applied to the matching variables in the active (target) dataset. If the source
dataset contains any variables that are not present in the active dataset (determined by
variable name), these variables are created in the active dataset.

163

APPLY DICTIONARY

SOURCE and TARGET Subcommands

The SOURCE subcommand is used to specify variables in the source file from which to apply
variable definition attributes. The TARGET subcommand is used to specify variables in the active
dataset to which to apply variable definition attributes.

All variables specified in the SOURCE subcommand must exist in the source file.

If the TARGET subcommand is specified without the SOURCE subcommand, all variables
specified must exist in the source file.

If the NEWVARS subcommand is specified, variables that are specified in the SOURCE
subcommand that exist in the source file but not in the target file will be created in the target
file as new variables using the variable definition attributes (variable and value labels,
missing values, etc.) from the source variable.

For variables with matching name and type, variable definition attributes from the source
variable are applied to the matching target variable.

If both SOURCE and TARGET are specified, the SOURCE subcommand can specify only one
variable. Variable definition attributes from that single variable in the SOURCE subcommand
are applied to all variables of the matching type. When applying the attributes of one variable
to many variables, all variables specified in the SOURCE and TARGET subcommands must

be of the same type.

For variables with matching names but different types, only variable labels are applied to
the target variables.

Table 13-1
Variable mapping for SOURCE and TARGET subcommands

SOURCE TARGET Variable mapping
subcommand subcommand

none none Variable definition attributes from the source dataset are applied to

matching variables in the active (target) dataset. New variables may
be created if the NEWVARS subcommand is specified.

many none Variable definition attributes for the specified variables are copied

from the source dataset to the matching variables in the active
(target) dataset. All specified variables must exist in the source
dataset. New variables may be created if the NEWVARS subcommand
is specified.

none many Variable definition attributes for the specified variables are copied

from the source dataset to the matching variables in the active
(target) dataset. All specified variables must exist in the source
dataset. New variables may be created if the NEWVARS subcommand
is specified.

one many Variable definition attributes for the specified variable in the source

dataset are applied to all specified variables in the active (target)
dataset that have a matching type. New variables may be created if
the NEWVARS subcommand is specified.

many many Invalid. Command not executed.

Example

APPLY DICTIONARY from *

/SOURCE VARIABLES = varl
/TARGET VARIABLES = var2 var3 var4d

164

APPLY DICTIONARY

/NEWVARS .

Variable definition attributes for var/ in the active dataset are copied to var2, var3, and var4
in the same dataset if they have a matching type.

B Any variables specified in the TARGET subcommand that do not already exist are created,
using the variable definition attributes of the variable specified in the SOURCE subcommand.
Example

APPLY DICTIONARY from “lastmonth.sav”

/SOURCE VARIABLES = wvarl, var2, var3.

Variable definition attributes from the specified variables in the source dataset are applied to
the matching variables in the active dataset.

For variables with matching names but different types, only variable labels from the source
variable are copied to the target variable.

In the absence of a NEWVARS subcommand, no new variables will be created.

FILEINFO Subcommand

FILEINFO applies global file definition attributes from the source dataset to the active (target)
dataset.

File definition attributes in the active dataset that are undefined in the source dataset are not
affected.

m This subcommand is ignored if the source dataset is the active dataset.

m This subcommand is ignored if no keywords are specified.

m For keywords that contain an associated value, the equals sign between the keyword and the

value is required—for example, DOCUMENTS = MERGE.

ATTRIBUTES Applies file attributes defined by the DATAFILE ATTRIBUTE command. You
can REPLACE or MERGE file attributes.

DOCUMENTS Applies documents (defined with the DOCUMENTS command) from the source
dataset to the active (target) dataset. You can REPLACE or MERGE documents.
DOCUMENTS = REPLACE replaces any documents in the active dataset,
deleting preexisting documents in the file. This is the default if DOCUMENTS
is specified without a value.
DOCUMENTS = MERGE merges documents from the source and active datasets.
Unique documents in the source file that don’t exist in the active dataset are
added to the active dataset. All documents are then sorted by date.

FILELABEL Replaces the file label (defined with the FILE LABEL command).

MRSETS Applies multiple response set definitions from the source dataset to the active

dataset. (Note that multiple response sets are currently used only by the
TABLES add-on module.) Multiple response sets in the source dataset that
contain variables that don’t exist in the active dataset are ignored unless those
variables are created by the same APPLY DICTIONARY command. You can
REPLACE or MERGE multiple response sets.

MRSETS = REPLACE deletes any existing multiple response sets in the active
dataset, replacing them with multiple response sets from the source dataset.

165

VARSETS

WEIGHT

ALL

Example

APPLY DICTIONARY

MRSETS = MERGE adds multiple response sets from the source dataset to the
collection of multiple response sets in the active dataset. If a set with the same
name exists in both files, the existing set in the active dataset is unchanged.

Applies variable set definitions from the source dataset to the active dataset.
Variable sets are used to control the list of variables that are displayed in dialog
boxes. Variable sets are defined by selecting Define Sets from the Utilities
menu. Sets in the source data file that contain variables that don’t exist in

the active dataset are ignored unless those variables are created by the same
APPLY DICTIONARY command. You can REPLACE or MERGE variable sets.

VARSETS = REPLACE deletes any existing variable sets in the active dataset,
replacing them with variable sets from the source dataset.

VARSETS = MERGE adds variable sets from the source dataset to the
collection of variable sets in the active dataset. If a set with the same name
exists in both files, the existing set in the active dataset is unchanged.

Weights cases by the variable specified in the source file if there's a matching
variable in the target file. This is the default if the subcommand is omitted.

Applies all file information from the source dataset to the active dataset.
Documents, multiple response sets, and variable sets are merged, not replaced.
File definition attributes in the active dataset that are undefined in the source
data file are not affected.

APPLY DICTIONARY FROM “lastmonth.sav”
/FILEINFO DOCUMENTS = REPLACE MRSETS = MERGE.

® Documents in the source dataset replace documents in the active dataset unless there are
no defined documents in the source dataset.

® Multiple response sets from the source dataset are added to the collection of defined multiple
response sets in the active dataset. Sets in the source dataset that contain variables that
don’t exist in the active dataset are ignored. If the same set name exists in both datasets, the
set in the active dataset remains unchanged.

VARINFO Subcommand

VARINFO applies variable definition attributes from the source dataset to the matching variables in
the active dataset. With the exception of VALLABELS, all keywords replace the variable definition
attributes in the active dataset with the attributes from the matching variables in the source dataset.

ALIGNMENT

ATTRIBUTES

FORMATS

LEVEL

Applies variable alignment for Data Editor display. This setting affects
alignment (left, right, center) only in the Data View display of the Data Editor.

Applies file attributes defined by the VARIABLE ATTRIBUTE command. You
can REPLACE or MERGE variable attributes.

Applies variable print and write formats. This is the same variable definition
attribute that can be defined with the FORMATS command. This setting is
primarily applicable only to numeric variables. For string variables, this affects
only the formats if the source or target variable is AHEX format and the other
is A format.

Applies variable measurement level (nominal, ordinal, scale). This is the same
variable definition attribute that can be defined with the VARIABLE LEVEL
command.

166

APPLY DICTIONARY

MISSING Applies variable missing value definitions. Any existing defined missing values

in the matching variables in the active dataset are deleted. This is the same
variable definition attribute that can be defined with the MISSING VALUES
command. Missing value definitions are not applied to long string (more than
eight characters) target variables. Missing values definitions are not applied to
short string variables if the source variable contains missing values of a longer
width than the defined width of the target variable.

VALLABELS Applies value label definitions. Value labels are not applied to long string

(more than eight characters) target variables. Value labels are not applied to
short string variables if the source variable contains defined value labels for
values longer than the defined width of the target variable. You can REPLACE
or MERGE value labels.

VALLABELS = REPLACE replaces any defined value labels from variable in
the active dataset with the value labels from the matching variable in the source
dataset.

VALLABELS = MERGE merges defined value labels for matching variables. If
the same value has a defined value label in both the source and active datasets,
the value label in the active dataset is unchanged.

WIDTH Display column width in the Data Editor. This affects only column width in Data

View in the Data Editor. It has no affect on the defined width of the variable.

Example

APPLY DICTIONARY from “lastmonth.sav”

/VARINFO LEVEL MISSING VALLABELS = MERGE.

The level of measurement and defined missing values from the source dataset are applied to
the matching variables in the active (target) dataset. Any existing missing values definitions
for those variables in the active dataset are deleted.

Value labels for matching variables in the two datasets are merged. If the same value has a
defined value label in both the source and active datasets, the value label in the active dataset
is unchanged.

AUTORECODE

AUTORECODE VARIABLES=varlist
/INTO new varlist

[/BLANK={VALID**}
{MISSING}

[/GROUP]

[/APPLY TEMPLATE='filespec']
[/SAVE TEMPLATE='filespec']
[/DESCENDING]

[/PRINT]
**Default if the subcommand omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

AUTORECODE VARIABLES=Company /INTO Rcompany.

Overview

AUTORECODE recodes the values of string and numeric variables to consecutive integers and puts
the recoded values into a new variable called a target variable. The value labels or values of
the original variable are used as value labels for the target variable. AUTORECODE is useful for
creating numeric independent (grouping) variables from string variables for procedures such as
ONEWAY and DISCRIMINANT. AUTORECODE can also recode the values of factor variables to
consecutive integers, which may be required by some procedures and which reduces the amount
of workspace needed by some statistical procedures.

Basic Specification

The basic specification is VARIABLES and INTO. VARIABLES specifies the variables to be
recoded. INTO provides names for the target variables that store the new values. VARIABLES
and INTO must name or imply the same number of variables.

Subcommand Order
B VARIABLES must be specified first.
B INTO must immediately follow VARIABLES.

® All other subcommands can be specified in any order.

167

168

AUTORECODE

Syntax Rules

B A variable cannot be recoded into itself. More generally, target variable names cannot
duplicate any variable names already in the working file.

m [fthe GROUP or APPLY TEMPLATE subcommand is specified, all variables on the VARIABLES
subcommand must be the same type (numeric or string).

m [fAPPLY TEMPLATE is specified, all variables on the VARIABLES subcommand must be the
same type (numeric or string) as the type defined in the template.

m File specifications on the APPLY TEMPLATE and SAVE TEMPLATE subcommands follow
the normal conventions for file specifications. Enclosing file specifications in quotation
marks is recommended.

Operations

B The values of each variable to be recoded are sorted and then assigned numeric values. By
default, the values are assigned in ascending order: 1 is assigned to the lowest nonmissing
value of the original variable; 2, to the second-lowest nonmissing value; and so on, for
each value of the original variable.

Values of the original variables are unchanged.

Missing values are recoded into values higher than any nonmissing values, with their order
preserved. For example, if the original variable has 10 nonmissing values, the first missing
value is recoded as 11 and retains its user-missing status. System-missing values remain
system-missing. (See the GROUP, APPLY TEMPLATE, and SAVE TEMPLATE subcommands
for additional rules for user-missing values.)

B AUTORECODE does not sort the cases in the working file. As a result, the consecutive numbers
assigned to the target variables may not be in order in the file.

m Target variables are assigned the same variable labels as the original source variables. To
change the variable labels, use the VARIABLE LABELS command after AUTORECODE.

B Value labels are automatically generated for each value of the target variables. If the original
value had a label, that label is used for the corresponding new value. If the original value did
not have a label, the old value itself is used as the value label for the new value. The defined
print format of the old value is used to create the new value label.

B AUTORECODE ignores SPLIT FILE specifications. However, any SELECT IF specifications
are in effect for AUTORECODE.

Example

DATA LIST / COMPANY 1-21 (A) SALES 24-28.
BEGIN DATA

CATFOOD JOY 10000

OLD FASHIONED CATFOOD 11200

PRIME CATFOOD 10900

CHOICE CATFOOD 14600
END DATA.

AUTORECODE VARIABLES=COMPANY /INTO=RCOMPANY /PRINT.

TABLES TABLE = SALES BY RCOMPANY

169
AUTORECODE

/TTITLE="'CATFOOD SALES BY COMPANY'.

B AUTORECODE recodes COMPANY into a numeric variable RCOMPANY. Values of
RCOMPANY are consecutive integers beginning with 1 and ending with the number of
different values entered for COMPANY. The values of COMPANY are used as value labels

for RCOMPANY’s numeric values. The PRINT subcommand displays a table of the original
and recoded values.

VARIABLES Subcommand

VARIABLES specifies the variables to be recoded. VARIABLES is required and must be specified
first. The actual keyword VARIABLES is optional.

B Values from the specified variables are recoded and stored in the target variables listed on
INTO. Values of the original variables are unchanged.

INTO Subcommand

INTO provides names for the target variables that store the new values. INTO is required and must
immediately follow VARIABLES.

® The number of target variables named or implied on INTO must equal the number of source
variables listed on VARIABLES.

Example

AUTORECODE VARIABLES=V1 V2 V3 /INTO=NEWV1 TO NEWV3 /PRINT.

B AUTORECODE stores the recoded values of V7, V2, and V'3 into target variables named
NEWVI, NEWV2, and NEWV3.

BLANK Subcommand

The BLANK subcommand specifies how to autorecode blank string values.
B BLANK is followed by an equals sign (=) and the keyword VALID or MISSING.

m The BLANK subcommand applies only to string variables (both short and long strings).
System-missing numeric values remain system-missing in the new, autorecoded variable(s).

m The BLANK subcommand has no effect if there are no string variables specified on the
VARIABLES subcommand.

VALID Blank string values are treated as valid, nonmissing values and are autorecoded into
nonmissing values. This is the default.

MISSING Blank string values are autorecoded into a user-missing value higher than the highest
nonmissing value.
Example

DATA LIST /stringVar (Al).
BEGIN DATA

170
AUTORECODE

a

b

C

d

END DATA.
AUTORECODE

VARIABLES=stringVar /INTO NumericVar
/BLANK=MISSING.

® The values a, b, ¢, and d are autorecoded into the numeric values 1 through 4.

m The blank value is autorecoded to 5, and 5 is defined as user-missing.

GROUP Subcommand

The subcommand GROUP allows you to specify that a single autorecoding scheme should be
generated for all the specified variables, yielding consistent coding for all of the variables.

® The GROUP subcommand has no additional keywords or specifications. By default, variables
are not grouped for autorecoding.

m All variables must be the same type (numeric or string).

m All observed values for all specified variables are used to create a sorted order of values
to recode into sequential integers.

m String variables can be of any length and can be of unequal length.

m User-missing values for the target variables are based on the first variable in the original
variable list with defined user-missing values. All other values from other original variables,
except for system-missing, are treated as valid.

m If only one variable is specified on the VARTABLES subcommand, the GROUP subcommand
is ignored.

m If GROUP and APPLY TEMPLATE are used on the same AUTORECODE command, value
mappings from the template are applied first. All remaining values are recoded into values
higher than the last value in the template, with user-missing values (based on the first variable
in the list with defined user-missing values) recoded into values higher than the last valid
value. See the APPLY TEMPLATE subcommand for more information.

Example

DATA LIST FREE /varl (al) wvar2 (al).
BEGIN DATA
a d
b e
c £
END DATA.
MISSING VALUES varl ("c¢") wvar2 ("f").
AUTORECODE VARIABLES=varl var2
/INTO newvarl newvar?2
/GROUP.

B A single autorecoding scheme is created and applied to both new variables.

171

AUTORECODE
® The user-missing value "c" from var!/ is autorecoded into a user-missing value.
® The user-missing value "£" from var2 is autorecoded into a valid value.

Table 14-1

Original and recoded values

Original value Autorecoded value
a 1

b 2

¢ 6 (user-missing)

d 3

e 4

f 5

SAVE TEMPLATE Subcommand

The savE TEMPLATE subcommand allows you to save the autorecode scheme used by the
current AUTORECODE command to an external template file, which you can then use when
autorecoding other variables using the APPLY TEMPLATE subcommand.

B SAVE TEMPLATE is followed by an equals sign (=) and a quoted file specification. The
default file extension for autorecode templates is .sat.

m The template contains information that maps the original nonmissing values to the recoded
values.

B Only information for nonmissing values is saved in the template. User-missing value
information is not retained.

® [f more than one variable is specified on the VARIABLES subcommand, the first variable
specified is used for the template, unless GROUP or APPLY TEMPLATE is also specified, in
which case a common autorecoding scheme for all variables is saved in the template.

Example

DATA LIST FREE /varl (al) var2 (al).
BEGIN DATA

a d

b e

C

£

END DATA.
MISSING VALUES varl ("c") var2 ("f").
AUTORECODE VARIABLES=varl wvar2

/INTO newvarl newvar2
/SAVE TEMPLATE='c:\temp\varl_template.sat"'.

The saved template contains an autorecode scheme that maps the string values of "a" and
"b" from varl to the numeric values 1 and 2, respectively.

The template contains no information for the value of "c" for var! because it is defined
as user-missing.

The template contains no information for values associated with var2 because the GROUP
subcommand was not specified.

172

AUTORECODE

Template File Format

An autorecode template file is actually an SPSS-format data file that contains two variables:
Source contains the original, unrecoded valid values, and Target contains the corresponding
recoded values. Together these two variables provide a mapping of original and recoded values.

You can therefore, theoretically, build your own custom template files, or simply include the
two mapping variables in an existing data file—but this type of use has not been tested.

APPLY TEMPLATE Subcommand

The ApPLY TEMPLATE subcommand allows you to apply a previously saved autorecode template
to the variables in the current AUTORECODE command, appending any additional values found

in the variables to the end of the scheme, preserving the relationship between the original and
autorecode values stored in the saved scheme.

B APPLY TEMPLATE is followed by an equals sign (=) and a quoted file specification.

m All variables on the VARIABLES subcommand must be the same type (numeric or string),
and that type must match the type defined in the template.

m Templates do not contain any information on user-missing values. User-missing values
for the target variables are based on the first variable in the original variable list with
defined user-missing values. All other values from other original variables, except for
system-missing, are treated as valid.

B Value mappings from the template are applied first. All remaining values are recoded into
values higher than the last value in the template, with user-missing values (based on the
first variable in the list with defined user-missing values) recoded into values higher than
the last valid value.

® [f multiple variables are specified on the VARIABLES subcommand, APPLY TEMPLATE
generates a grouped recoding scheme, with or without an explicit GROUP subcommand.

Example

DATA LIST FREE /varl (al).
BEGIN DATA
abd
END DATA.
AUTORECODE VARIABLES=varl
/INTO newvarl
/SAVE TEMPLATE='c:\temp\varl_template.sat'.
DATA LIST FREE /var2 (al).
BEGIN DATA
abc
END DATA.
AUTORECODE VARIABLES=var2
/INTO newvar?2
/APPLY TEMPLATE='c:\temp\varl_template.sat'.

® The template file varl_template.sat maps the string values a, b, and d to the numeric values
1, 2, and 3, respectively.

B When the template is applied to the variable var2 with the string values a, b, and c, the
autorecoded values for newvar2 are 1, 2, and 4, respectively. The string value “c” is
autorecoded to 4 because the template maps 3 to the string value “d”.

173

AUTORECODE
m The data dictionary contains defined value labels for all four values—the three from the
template and the one new value read from the file.

Table 14-2

Defined value labels for newvar2

Value Label

1 a

2 b

3 d

4 C

Interaction between APPLY TEMPLATE and SAVE TEMPLATE

If APPLY TEMPLATE and SAVE TEMPLATE are both used in the same AUTORECODE
command, APPLY TEMPLATE is always processed first, regardless of subcommand order,
and the autorecode scheme saved by SAVE TEMPLATE is the union of the original template
plus any appended value definitions.

APPLY TEMPLATE and SAVE TEMPLATE can specify the same file, resulting in the template
being updated to include any newly appended value definitions.

Example

AUTORECODE VARIABLES=products
/INTO productCodes
/APPLY TEMPLATE='c:\mydir\product_codes.sat'
/SAVE TEMPLATE='c:\mydir\product_codes.sat.

The autorecode scheme in the template file is applied for autorecoding products into
productCodes.

Any data values for products not defined in the template are autorecoded into values higher
than the highest value in the original template.

Any user-missing values for products are autorecoded into values higher than the highest
nonmissing autorecoded value.

The template saved is the autorecode scheme used to autorecode product—the original
autorecode scheme plus any additional values in product that were appended to the scheme.

PRINT Subcommand

PRINT displays a correspondence table of the original values of the source variables and the new
values of the target variables. The new value labels are also displayed.

® The only specification is the keyword PRINT. There are no additional specifications.

174
AUTORECODE

DESCENDING Subcommand

By default, values for the source variable are recoded in ascending order (from lowest to highest).
DESCENDING assigns the values to new variables in descending order (from highest to lowest).
The largest value is assigned 1, the second-largest, 2, and so on.

m The only specification is the keyword DESCENDING. There are no additional specifications.

BEGIN DATA-END DATA

BEGIN DATA
data records
END DATA

Example

BEGIN DATA

1

3424 274 ABU DHABI 2

2 39932 86 AMSTERDAM 4

3 8889 232 ATHENS
4 3424 294 BOGOTA 3
END DATA.

Overview

BEGIN DATA and END DATA are used when data are entered within the command sequence
(inline data). BEGIN DATA and END DATA are also used for inline matrix data. BEGIN DATA
signals the beginning of data lines and END DATA signals the end of data lines.

Basic Specification

The basic specification is BEGIN DATA, the data lines, and END DATA. BEGIN DATA must be

specified by itself on the line that immediately precedes the first data line. END DATA is specified
by itself on the line that immediately follows the last data line.

Syntax Rules

B BEGIN DATA, the data, and END DATA must precede the first procedure.

B The command terminator after BEGIN DATA is optional. It is best to leave it out so that the
program will treat inline data as one continuous specification.

B END DATA must always begin in column 1. It must be spelled out in full and can have only
one space between the words END and DATA. Procedures and additional transformations can
follow the END DATA command.

m Data lines must not have a command terminator. For inline data formats, see DATA LIST.

m Inline data records are limited to a maximum of 80 columns. (On some systems, the
maximum may be fewer than 80 columns.) If data records exceed 80 columns, they must be
stored in an external file that is specified on the FILE subcommand of the DATA LIST (or
similar) command.

Operations

® When the program encounters BEGIN DATA, it begins to read and process data on the next
input line. All preceding transformation commands are processed as the working file is built.

m The program continues to evaluate input lines as data until it encounters END DATA, at which

point it begins evaluating input lines as commands.

175

176

BEGIN DATA-END DATA

No other commands are recognized between BEGIN DATA and END DATA.

The INCLUDE command can specify a file that contains BEGIN DATA, data lines, and END
DATA . The data in such a file are treated as inline data. Thus, the FILE subcommand should
be omitted from the DATA LIST (or similar) command.

B When running the program from prompts, the prompt DATA> appears immediately after
BEGIN DATA is specified. After END DATA is specified, the command line prompt returns.

Examples

DATA LIST /XVAR 1 YVAR ZVAR 3-12 CVAR 14-22(A) JVAR 24.
BEGIN DATA

3424 274 ABU DHABI
39932 86 AMSTERDAM
8889 232 ATHENS
3424 294 BOGOTA
11323 332 HONG KONG

323 232 MANILA
3234 899 CHICAGO
78998 2344 VIENNA
8870 983 ZURICH
END DATA.
MEANS XVAR BY JVAR.

NN

LWoOoJaulTbdWwWwNE
Wi PP WwWww

B DATA LIST defines the names and column locations of the variables. The FILE subcommand
is omitted because the data are inline.

m There are nine cases in the inline data. Each line of data completes a case.

B END DATA signals the end of data lines. It begins in column 1 and has only a single space
between END and DATA.

BEGIN GPL-END GPL

BEGIN GPL
gpl specification
END GPL

Example

GGRAPH
/GRAPHDATASET NAME="graphdataset" VARIABLES=jobcat COUNT ()
/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL
SOURCE: s=userSource (id("graphdataset"))
DATA: jobcat=col (source(s), name("jobcat"), unit.category())

DATA: count=col (source(s), name("COUNT"))
GUIDE: axis(dim(1l), label ("Employment Category"))
GUIDE: axis(dim(2), label("Count"))
ELEMENT: interval (position (jobcat*count))
END GPL.

Overview

BEGIN GPL and END GPL are used when Graphics Production Language (GPL) code is entered
within the command sequence (inline graph specification). BEGIN GPL and END GPL must
follow a GGRAPH command, without any blank lines between BEGIN GPL and the command
terminator line for GGRAPH. Only comments are allowed between BEGIN GPL and the command
terminator line for GGRAPH. BEGIN GPL must be at the start of the line on which it appears, with
no preceding spaces. BEGIN GPL signals the beginning of GPL code, and END GPL signals

the end of GPL code.

For more information about GGRAPH, see GGRAPH on p. 724. The examples in the GPL
documentation may look different compared to the syntax pasted from the Chart Builder. The
main difference is when aggregation occurs. See Working with the GPL on p. 734 for information
about the differences. See Examples on p. 737 for examples with GPL that is similar to the
pasted syntax.

Syntax Rules
® Within a GPL block, only GPL statements are allowed.
m Strings in GPL are enclosed in quotation marks. You cannot use single quotes (apostrophes).

m With the SPSS Batch Facility (available only with SPSS Server), use the -1 switch when
submitting command files that contain GPL blocks.

Scope and Limitations
m GPL blocks cannot be nested within GPL blocks.

® GPL blocks cannot be contained within DEFINE- ! ENDDEFINE macro definitions.

177

178

BEGIN GPL-END GPL

m GPL blocks can be contained in command syntax files run via the INSERT command, with
the default SYNTAX=INTERACTIVE setting.

m GPL blocks cannot be contained within command syntax files run via the INCLUDE command.

BEGIN PROGRAM-END PROGRAM

BEGIN PROGRAM-END PROGRAM is available in the Programmability Extension. It is not
available in SPSS Statistical Services for SQL Server 2005.

BEGIN PROGRAM [programming language name] .
programming language-specific statements
END PROGRAM.

Overview

BEGIN PROGRAM-END PROGRAM provides the ability to integrate the capabilities of external
programming languages with SPSS. One of the major benefits of these program blocks is the
ability to add jobwise flow control to the SPSS command stream. Outside of program blocks,
SPSS can execute casewise conditional actions, based on criteria that evaluate each case, but
jobwise flow control, such as running different procedures for different variables based on data
type or level of measurement or determining which procedure to run next based on the results
of the last procedure is much more difficult. Program blocks make jobwise flow control much
easier to accomplish. With program blocks, you can control the commands that are run based
on many criteria, including:

® Dictionary information (e.g., data type, measurement level, variable names)
m Data conditions

® Output values

m Error codes (that indicate if a command ran successfully or not)

You can also read data from the active dataset to perform additional computations, update the
active dataset with results, and create custom pivot table output.

Figure 17-1
Jobwise Flow Control

Cammand 1

Get infarmation
fratn dictionary,
data, output
return codes, etc

Command 2 Command 3

179

180

BEGIN PROGRAM-END PROGRAM

Operations

BEGIN PROGRAM signals the beginning of a set of code instructions controlled by an external
programming language.

B After BEGIN PROGRAM is executed, other SPSS commands do not execute until END
PROGRAM is encountered.

® Information on using SPSS with external programming languages is available at
http://www.spss.com/devcentral

Syntax Rules

m Within a program block, only statements recognized by the specified programming language
are allowed.

m SPSS command syntax generated within a program block and submitted to SPSS must follow
interactive syntax rules. For more information, see Running Commands on p. 18.

m Within a program block, each line should not exceed 251 bytes (although syntax generated by
those lines can be longer).

m With the SPSS Batch Facility (available only with SPSS Server), use the -i switch when

submitting command files that contain program blocks. All command syntax (not just the
program blocks) in the file must adhere to interactive syntax rules.

Within a program block, the programming language is in control, and the syntax rules for that
programming language apply. SPSS command syntax generated from within program blocks
must always follow interactive syntax rules. For most practical purposes this means SPSS
command strings you build in a programming block must contain a period (.) at the end of
each SPSS command.

Scope and Limitations

Programmatic variables created in a program block cannot be used outside of program blocks.
However, you can generate SPSS macro variables within program blocks that can be used
outside program blocks.

Program blocks cannot be nested within program blocks.
Program blocks cannot be contained within DEFINE- ! ENDDEF INE macro definitions.

Program blocks can be contained in command syntax files run via the INSERT command,
with the default SYNTAX=INTERACTIVE setting. (If, however, an INSERT command
containing a program block is run from within a program block, that would create a nested
program block, which is not allowed.)

Program blocks cannot be contained within command syntax files run via the INCLUDE
command.

The Python function sys.exit () is not supported for use within a program block.

http://www.spss.com/devcentral

181

BEGIN PROGRAM-END PROGRAM

Using External Programming Languages

Use of the Programmability Extension requires an integration plug-in for an external language.
An integration plug-in for the Python programming language, along with Python, is available
from the SPSS for Windows installation CD.

For information on how to use external programming languages with BEGIN PROGRAM-END
PROGRAM, go to http://www.spss.com/devcentral

Note: BEGIN PROGRAM-END PROGRAM is not available in SPSS Statistical Services for SQL
Server 2005.

http://www.spss.com/devcentral

BREAK

BREAK

This command does not read the active dataset. It is stored, pending execution with the next
command that reads the dataset. For more information, see Command Order on p. 21.

Overview

BREAK controls looping that cannot be fully controlled with IF clauses. Generally, BREAK is
used within a DO IF—END IF structure. The expression on the DO IF command specifies the
condition in which BREAK is executed.

Basic Specification
m The only specification is the keyword BREAK. There are no additional specifications.

B BREAK must be specified within a loop structure. Otherwise, an error results.

Operations

B A BREAK command inside a loop structure but not inside a DO IF-END IF structure
terminates the first iteration of the loop for all cases, since no conditions for BREAK are
specified.

B A BREAK command within an inner loop terminates only iterations in that structure, not in
any outer loop structures.

Examples
VECTOR #X(10) .
LOOP #I = 1 TO #NREC.
+ DATA LIST NOTABLE/ #X1 TO #X10 1-20.
+ LOOP #J = 1 TO 10.
+ DO IF SYSMIS (#X(#J)) .
+ BREAK.
+ END IF.
+ COMPUTE X = #X(#J) .
+ END CASE.
+ END LOOP.
END LOOP.

B The inner loop terminates when there is a system-missing value for any of the variables #X1
to #X10.

m The outer loop continues until all records are read.

182

CACHE

CACHE.

This command does not read the active dataset. It is stored, pending execution with the next
command that reads the dataset. For more information, see Command Order on p. 21.

Although the virtual active file can vastly reduce the amount of temporary disk space required,
the absence of a temporary copy of the “active” file means that the original data source has to
be reread for each procedure. For data tables read from a database source, this means that the
SQL query that reads the information from the database must be reexecuted for any command
or procedure that needs to read the data. Since virtually all statistical analysis procedures and
charting procedures need to read the data, the SQL query is reexecuted for each procedure that
you run, which can result in a significant increase in processing time if you run a large number
of procedures.

If you have sufficient disk space on the computer performing the analysis (either your local
computer or a remote server), you can eliminate multiple SQL queries and improve processing
time by creating a data cache of the active file with the CACHE command. The CACHE command
tells SPSS to copy all of the data to a temporary disk file the next time the data are passed to
run a procedure. If you want the cache written immediately, use the EXECUTE command after
the CACHE command.

® The only specification is the command name CACHE.
B A cache file will not be written during a procedure that uses temporary variables.

B A cache file will not be written if the data are already in a temporary disk file and that file
has not been modified since it was written.

Example

CACHE.

TEMPORARY .

RECODE alcohol(0 thru .04 = 'sober') (.04 thru .08 = 'tipsy')
(else = 'drunk') into state.

FREQUENCIES var=state.

GRAPH. ..

No cache file will be written during the FREQUENCIES procedure. It will be written during
the GRAPH procedure.

183

CASEPLOT

CASEPLOT VARIABLES=varlist

[/DIFF={1}]
{n}

[/SDIFF={1}]
{n}

[/PERIOD=n]

[/ {NOLOG**}]
{LN }

[/ID=varname]

[/MARK={varname 1]
{date specification}

[/SPLIT {UNIFORM**}]
{SCALE }

[/APPLY [='model name']]

For plots with one variable:

[/FORMAT=[{NOFILL**}] [{NOREFERENCE * * 311
{LEFT } {REFERENCE[(value)]}

For plots with multiple variables:

[/FORMAT={NOJOIN**}]
{JOIN }
{HILO }

**Default if the subcommand is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

CASEPLOT VARIABLES = TICKETS
/LN
/DIFF
/SDIFF
/PERIOD=12
/FORMAT=REFERENCE
/MARK=Y 55 M 6.

Overview
CASEPLOT produces a plot of one or more time series or sequence variables. You can request
natural log and differencing transformations to produce plots of transformed variables. Several

plot formats are available.

184

185

CASEPLOT
Options

Modifying the Variables. You can request a natural log transformation of the variable using the
LN subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF
and DIFF subcommands. With seasonal differencing, you can also specify the periodicity on
the PERIOD subcommand.

Plot Format. With the FORMAT subcommand, you can fill in the area on one side of the plotted
values on plots with one variable. You can also plot a reference line indicating the variable mean.
For plots with two or more variables, you can specify whether you want to join the values for
each case with a horizontal line. With the ID subcommand, you can label the vertical axis with
the values of a specified variable. You can mark the onset of an intervention variable on the
plot with the MARK subcommand.

Split-File Processing. You can control how to plot data that have been divided into subgroups
by a SPLIT FILE command using the SPLIT subcommand.

Basic Specification

The basic specification is one or more variable names.

m [fthe DATE command has been specified, the vertical axis is labeled with the DATE variable
at periodic intervals. Otherwise, sequence numbers are used. The horizontal axis is labeled
with the value scale determined by the plotted variables.

Figure 20-1
CASEPLOT with DATE variable

1995
1998
1997 <
1996 —
1995~
1994
1993
1992
1991
1990 —
1985 —
1958 —
1987 -
1986 —
1985 —
1954 —
1983 —
1982 —
1981 -
1980 —

Date

I T] |
9.00 9.50 10.00 1050 11.00
Price

186

CASEPLOT

Subcommand Order

® Subcommands can be specified in any order.
Syntax Rules
B VARIABLES can be specified only once.
m Other subcommands can be specified more than once, but only the last specification of each
one is executed.
Operations
® Subcommand specifications apply to all variables named on the CASEPL.OT command.
m [f the LN subcommand is specified, any differencing requested on that CASEPLOT command
is done on the log-transformed variables.
m Split-file information is displayed as part of the subtitle, and transformation information is
displayed as part of the footnote.
Limitations
B A maximum of one VARIABLES subcommand. There is no limit on the number of variables
named on the list.
Examples
CASEPLOT VARIABLES = TICKETS
/LN
/DIFF
/SDIFF
/PERIOD=12

/FORMAT=REFERENCE
/MARK=Y 55 M 6.

This example produces a plot of TICKETS after a natural log transformation, differencing,
and seasonal differencing have been applied.

LN transforms the data using the natural logarithm (base e) of the variable.

DIFF differences the variable once.

SDIFF and PERTIOD apply one degree of seasonal differencing with a periodicity of 12.
FORMAT=REFERENCE adds a reference line at the variable mean.

MARK provides a marker on the plot at June, 1955. The marker is displayed as a horizontal
reference line.

VARIABLES Subcommand

VARIABLES specifies the names of the variables to be plotted and is the only required
subcommand.

187

CASEPLOT
DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary variable to a stationary
one with a constant mean and variance before plotting.

B You can specify any positive integer on DIFF.
m [fDIFF is specified without a value, the default is 1.

B The number of values displayed decreases by 1 for each degree of differencing.

Example

CASEPLOT VARIABLES = TICKETS
/DIFF=2.

® In this example, TICKETS is differenced twice before plotting.

SDIFF Subcommand

If the variable exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference a variable before plotting.

m The specification on SDIFF indicates the degree of seasonal differencing and can be any
positive integer.

If sDIFF is specified without a value, the degree of seasonal differencing defaults to 1.
The number of seasons displayed decreases by 1 for each degree of seasonal differencing.

The length of the period used by SDIFF is specified on the PERTOD subcommand. If the
PERTOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERTOD subcommand below).

PERIOD Subcommand

PERTOD indicates the length of the period to be used by the SDIFF subcommand.

m The specification on PERIOD indicates how many observations are in one period or season
and can be any positive integer.

B PERIOD is ignored if it is used without the SDIFF subcommand.

m [f PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If TSET
PERIOD is not specified either, the periodicity established on the DATE command is used. If
periodicity is not established anywhere, the SDIFF subcommand will not be executed.

Example

CASEPLOT VARIABLES = TICKETS
/SDIFF=1
/PERIOD=12.

® This command applies one degree of seasonal differencing with 12 observations per season to
TICKETS before plotting.

188

CASEPLOT

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of the variable and is used to remove
varying amplitude over time. NOLOG indicates that the data should not be log transformed.
NOLOG is the default.

m [f you specify LN on CASEPLOT, any differencing requested on that command will be done
on the log-transformed variable.

There are no additional specifications on LN or NOLOG.
Only the last LN or NOLOG subcommand on a CASEPLOT command is executed.

If a natural log transformation is requested, any value less than or equal to zero is set to
system-missing.

B NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.
Example

CASEPLOT VARIABLES = TICKETS
/LN.

®m In this example, TICKETS is transformed using the natural logarithm before plotting.

ID Subcommand

ID names a variable whose values will be used as the left-axis labels.

® The only specification on ID is a variable name. If you have a variable named /D in your
active dataset, the equals sign after the subcommand is required.

1D overrides the specification on TSET ID.

If ID or TSET 1ID is not specified, the left vertical axis is labeled with the DATE variable
created by the DATE command. If the DATE _variable has not been created, the observation
or sequence number is used as the label.

Example

CASEPLOT VARIABLES = VARA
/ID=VARB.

m In this example, the values of the variable VARB will be used to label the left axis of the
plot of VARA.

FORMAT Subcommand

FORMAT controls the plot format.

B The specification on FORMAT is one of the keywords listed below.

189

CASEPLOT

B The keywords NOFILL, LEFT, NOREFERENCE, and REFERENCE apply to plots with one
variable. NOFILL and LEFT are alternatives and indicate how the plot is filled. NOREFERENCE
and REFERENCE are alternatives and specify whether a reference line is displayed. One
keyword from each set can be specified. NOFILL and NOREFERENCE are the defaults.

® The keywords JOIN, NOJOIN, and HILO apply to plots with multiple variables and are
alternatives. NOJOIN is the default. Only one keyword can be specified on a FORMAT
subcommand for plots with two variables.

The following formats are available for plots of one variable:

NOFILL Plot only the values for the variable with no fill. NOFILL produces a plot with
no fill to the left or right of the plotted values. This is the default format when
one variable is specified.

LEFT Plot the values for the variable and fill in the area to the left. If the plotted
variable has missing or negative values, the keyword LEFT is ignored and the
default NOFILL is used instead.

Figure 20-2
FORMAT=LEFT

1999 —
1998 —
1997 —
1986 —
1985 —
1954 —
19573 —
1982 —
1981 —
1950 —
1989 —
1985 =
1987 —
1986 —
1985 —
1984 —
18983 —
18952 =
18981 =
1980

Date

|] I
950 10.00 1050 11.00
Price

NOREFERENCE Do not plot a reference line. This is the default when one variable is specified.

REFERENCE(value) Plot a reference line at the specified value or at the variable mean if no value is
specified. A fill chart is displayed as an area chart with a reference line and a
non-fill chart is displayed as a line chart with a reference line.

190

CASEPLOT

Figure 20-3

FORMAT=REFERENCE

1995 —
1998 —
1987 —
1996 —
1985 —
1984 —
1983 —
1982 —
1881 —
1990 —
1989 —

Date

1988 — <

1987 —

1983 —
1952 —
1951 -
1980 —

AN/

1986 —
1985 —
1984 —

N

~
=
[

__-___——-——__________-_-_
T I T |
950 10.00 1050 11.00
Price

The following formats are available for plots of multiple variables:

NOJOIN

JOIN

HILO

MARK Subcommand

Plot the values of each variable named. Different colors or line patterns are
used for multiple variables. Multiple occurrences of the same value for a single
observation are plotted using a dollar sign ($). This is the default format for plots
of multiple variables.

Plot the values of each variable and join the values for each case. Values
are plotted as described for NOJOIN, and the values for each case are joined
together by a line.

Plot the highest and lowest values across variables for each case and join the
two values together. The high and low values are plotted as a pair of vertical bars
and are joined with a dashed line. HILO is ignored if more than three variables
are specified, and the default NOJOIN is used instead.

Use MARK to indicate the onset of an intervention variable.

m The onset date is indicated by a horizontal reference line.

m The specification on MARK can be either a variable name or an onset date if the DATE _

variable exists.

191
CASEPLOT

If a variable is named, the reference line indicates where the values of that variable change.

A date specification follows the same format as the DATE command—that is, a keyword
followed by a value. For example, the specification for June, 1955,is Y 1955 M 6 (or Y 55
M 6 if only the last two digits of the year are used on DATE).

Figure 20-4
MARK Y=1990

1999 —
1995 —
1997 —
1956 —
1985 =
1954 ~
1983 <
1952 —
1981 —
1980
1989 —
18955 =~
18987 <
1986 —
18985
18984 —
1983
1982 <
1981 <
1980

Date

T | T |
9.50 10.00 10.50 11.00
Price

SPLIT Subcommand

SPLIT specifies how to plot data that have been divided into subgroups by a SPLIT FILE
command. The specification on SPLIT is either SCALE or UNIFORM.

B [f FORMAT=REFERENCE is specified when SPLIT=SCALE, the reference line is placed at the
mean of the subgroup. If FORMAT=REFERENCE is specified when SPLIT=UNIFORM, the
reference line is placed at the overall mean.

UNIFORM Uniform scale. The horizontal axis is scaled according to the values of the entire
dataset. This is the default if SPLIT is not specified.
SCALE Individual scale. The horizontal axis is scaled according to the values of each

individual subgroup.

Example

SPLIT FILE BY REGION.
CASEPLOT VARIABLES = TICKETS / SPLIT=SCALE.

192

CASEPLOT

m This example produces one plot for each REGION subgroup.

m The horizontal axis for each plot is scaled according to the values of TICKETS for each

particular region.

APPLY Subcommand

APPLY allows you to produce a caseplot using previously defined specifications without having to
repeat the CASEPLOT subcommands.

B The only specification on APPLY is the name of a previous model in quotes. If a model name
is not specified, the specifications from the previous CASEPLOT command are used.

m [fno variables are specified, the variables that were specified for the original plot are used.

m To change one or more plot specifications, specify the subcommands of only those portions
you want to change after the APPLY subcommand.

m To plot different variables, enter new variable names before or after the APPLY subcommand.

Example

CASEPLOT VARIABLES = TICKETS

/LN
/DIFF=1
/SDIFF=1
/PER=12.

CASEPLOT VARIABLES = ROUNDTRP

/APPLY.

CASEPLOT APPLY

/NOLOG.

The first command produces a plot of TICKETS after a natural log transformation,
differencing, and seasonal differencing.

The second command plots ROUNDTRP using the same transformations specified for
TICKETS.

The third command produces a plot of ROUNDTRP but this time without any natural log
transformation. The variable is still differenced once and seasonally differenced with a
periodicity of 12.

CASESTOVARS

CASESTOVARS
[/ID = varlist]
[/FIXED = varlist]

[/AUTOFIX = {YES**}]
(N0}

[/VIND [ROOT = rootname]]
[/COUNT = new variable ["label"]]
[/RENAME varname=rootname varname=rootname ...]

[/SEPARATOR = {"." 1]
{“string”}]

[/INDEX = varlist]

[/GROUPBY = {VARIABLE**}]
{INDEX 31

[/DROP = varlist]
**Default if the subcommand is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

CASESTOVARS /ID idvar /INDEX varl.

Overview

A variable contains information that you want to analyze, such as a measurement or a test score.
A case is an observation, such as an individual or an institution.

In a simple data file, each variable is a single column in your data, and each case is a single
row in your data. So, if you were recording the score on a test for all students in a class, the scores
would appear in only one column and there would be only one row for each student.

Complex data files store data in more than one column or row. For example, in a complex
data file, information about a case could be stored in more than one row. So, if you were
recording monthly test scores for all students in a class, there would be multiple rows for each
student—one for each month.

CASESTOVARS restructures complex data that has multiple rows for a case. You can use it
to restructure data in which repeated measurements of a single case were recorded in multiple
rows (row groups) into a new data file in which each case appears as separate variables (variable
groups) in a single row. It replaces the active dataset.

193

194

CASESTOVARS

Options

Automatic Classification of Fixed Variables. The values of fixed variables do not vary within a row
group. You can use the AUTOFIX subcommand to let the procedure determine which variables are
fixed and which variables are to become variable groups in the new data file.

Naming New Variables. You can use the RENAME, SEPARATOR, and INDEX subcommands to
control the names for the new variables.

Ordering New Variables. You can use the GROUPBY subcommand to specify how to order the
new variables in the new data file.

Creating Indicator Variables. You can use the VIND subcommand to create indicator variables. An
indicator variable indicates the presence or absence of a value for a case. An indicator variable
has the value of 1 if the case has a value; otherwise, it is 0.

Creating a Count Variable. You can use the COUNT subcommand to create a count variable that
contains the number of rows in the original data that were used to create a row in the new data file.

Variable Selection. You can use the DROP subcommand to specify which variables from the
original data file are dropped from the new data file.

Basic Specification

The basic specification is simply the command keyword.

m [f split-file processing is in effect, the basic specification creates a row in the new data file for
each combination of values of the SPLIT FILE variables. If split-file processing is not in
effect, the basic specification results in a new data file with one row.

m Because the basic specification can create quite a few new columns in the new data file, the
use of an ID subcommand to identify groups of cases is recommended.

Subcommand Order

Subcommands can be specified in any order.

Syntax Rules

Each subcommand can be specified only once.

Operations

m Original row order. CASESTOVARS assumes that the original data are sorted by SPLIT and ID
variables.

m |dentifying row groups in the original file. A row group consists of rows in the original data
that share the same values of variables listed on the ID subcommand. Row groups are
consolidated into a single row in the new data file. Each time a new combination of ID
values is encountered, a new row is created.

195
CASESTOVARS

m Split-file processing and row groups. If split-file processing is in effect, the split variables are
automatically used to identify row groups (they are treated as though they appeared first on
the 1D subcommand). Split-file processing remains in effect in the new data file unless a
variable that is used to split the file is named on the DROP subcommand.

m New variable groups. A variable group is a group of related columns in the new data file that
is created from a variable in the original data. Each variable group contains a variable for
each index value or combination of index values encountered.

m Candidate variables. A variable in the original data is a candidate to become a variable group
in the new data file if it is not used on the SPLIT command or the ID, FIXED, or DROP
subcommands and its values vary within the row group. Variables named on the SPLIT, ID,
and FIXED subcommands are assumed to not vary within the row group and are simply
copied into the new data file.

m New variable names. The names of the variables in a new group are constructed by the
procedure. It uses the rootname specified on the RENAME subcommand and the string named
on the SEPARATOR subcommand.

m New variable formats. With the exception of names and labels, the dictionary information
for all of the new variables in a group (for example, value labels and format) is taken from
the variable in the original data.

® New variable order. New variables are created in the order specified by the GROUPBY
subcommand.

m Weighted files. The WETGHT command does not affect the results of CASESTOVARS. If the
original data are weighted, the new data file will be weighted unless the variable that is used
as the weight is dropped from the new data file.

m Selected cases. The FILTER and USE commands do not affect the results of CASESTOVARS.
It processes all cases.

Limitations

The TEMPORARY command cannot be in effect when CASESTOVARS is executed.

Examples

The following is the LIST output for a data file in which repeated measurements for the same
case are stored on separate rows in a single variable.

The commands:

SPLIT FILE BY insure.

CASESTOVARS
/ID=caseid
/INDEX=month.

create a new variable group for bps and a new group for bpd. The LIST output for the new
active dataset is as follows:

® The row groups in the original data are identified by insure and caseid.

B There are four row groups—one for each combination of the values in insure and caseid.

196

CASESTOVARS

The command creates four rows in the new data file, one for each row group.

The candidate variables from the original file are bps and bpd. They vary within the row
group, so they will become variable groups in the new data file.

The command creates two new variable groups—one for bps and one for bpd.

Each variable group contains three new variables—one for each unique value of the index
variable month.

ID Subcommand

The ID subcommand specifies variables that identify the rows from the original data that should
be grouped together in the new data file.

If the 1D subcommand is omitted, only SPLIT FILE variables (if any) will be used to group
rows in the original data and to identify rows in the new data file.

CASESTOVARS expects the data to be sorted by SPLIT FILE variables and then by ID
variables. If split-file processing is in effect, the original data should be sorted on the split
variables in the order given on the SPLIT FILE command and then on the ID variables in
the order in which they appear in the ID subcommand.

A variable may appear on both the SPLIT FILE command and the ID subcommand.

Variables listed on the SPLIT FILE command and on the ID subcommand are copied into
the new data file with their original values and dictionary information unless they are dropped
with the DROP subcommand.

Variables listed on the ID subcommand may not appear on the FIXED or INDEX
subcommands.

Rows in the original data for which any ID variable has the system-missing value or is blank
are not included in the new data file, and a warning message is displayed.

ID variables are not candidates to become a variable group in the new data file.

INDEX Subcommand

In the original data, a variable appears in a single column. In the new data file, that variable will
appear in multiple new columns. The INDEX subcommand names the variables in the original
data that should be used to create the new columns. INDEX variables are also used to name

the

new columns.

Optionally, with the GROUPBY subcommand, INDEX variables can be used to determine the
order of the new columns, and, with the VIND subcommand, INDEX variables can be used to
create indicator variables.

String variables can be used as index variables. They cannot contain blank values for rows in
the original data that qualify for inclusion in the new data file.

Numeric variables can be used as index variables. They must contain only non-negative
integer values and cannot have system-missing or blank values.

Within each row group in the original file, each row must have a different combination of
values of the index variables.

197
CASESTOVARS

m [f the INDEX subcommand is not used, the index starts with 1 within each row group and
increments each time a new value is encountered in the original variable.

Bm Variables listed on the INDEX subcommand may not appear on the ID, FIXED, or DROP
subcommands.

® Index variables are not are not candidates to become a variable group in the new data file.

VIND Subcommand

The VIND subcommand creates indicator variables in the new data file. An indicator variable
indicates the presence or absence of a value for a case. An indicator variable has the value of
1 if the case has a value; otherwise, it is 0.

B One new indicator variable is created for each unique value of the variables specified on
the INDEX subcommand.

m [f the INDEX subcommand is not used, an indicator variable is created each time a new
value is encountered within a row group.

B An optional rootname can be specified after the ROOT keyword on the subcommand. The
default rootname is ind.

® The format for the new indicator variables is F1.0.

Example

If the original variables are:

insure caseid month bps bpd

and the data are as shown in the first example, the commands:

SPLIT FILE BY insure.

CASESTOVARS
/ID=caseid
/INDEX=month
/VIND
/DROP=caseid bpd.

create a new file with the following data:

® The command created three new indicator variables—one for each unique value of the index
variable month.

COUNT Subcommand

CASESTOVARS consolidates row groups in the original data into a single row in the new data file.
The COUNT subcommand creates a new variable that contains the number of rows in the original
data that were used to generate the row in the new data file.

B One new variable is named on the COUNT subcommand. It must have a unique name.

198

CASESTOVARS

m The label for the new variable is optional and, if specified, must be delimited by apostrophes
or quotation marks.

® The format of the new count variable is F4.0.

Example

If the original data are as shown in the first example, the commands:

SPLIT FILE BY insure.
CASESTOVARS
/ID=caseid
/COUNT=countvar
/DROP=insure month bpd.

create a new file with the following data:

B The command created a count variable, countvar, which contains the number of rows in the
original data that were used to generate the current row.

FIXED Subcommand

The FIXED subcommand names the variables that should be copied from the original data
to the new data file.

B CASESTOVARS assumes that variables named on the FIXED subcommand do not vary
within row groups in the original data. If they vary, a warning message is generated and
the command is executed.

m Fixed variables appear as a single column in the new data file. Their values are simply copied
to the new file.

B The AUTOFIX subcommand can automatically determine which variables in the original data
are fixed. By default, the AUTOFIX subcommand overrides the FIXED subcommand.

AUTOFIX Subcommand

The AUTOFIX subcommand evaluates candidate variables and classifies them as either fixed or
as the source of a variable group.

® A candidate variable is a variable in the original data that does not appear on the SPLIT
command or on the ID, INDEX, and DROP subcommands.

199

CASESTOVARS

B An original variable that does not vary within the row group is classified as a fixed variable

and is copied into a single variable in the new data file.
B An original variable that does vary within the row group is classified as the source of a
variable group. It becomes a variable group in the new data file.

YES Evaluate and automatically classify all candidate variables. The procedure automatically
evaluates and classifies all candidate variables. This is the default. If there is a FIXED
subcommand, the procedure displays a warning message for each misclassified variable
and automatically corrects the error. Otherwise, no warning messages are displayed. This
option overrides the FIXED subcommand.

NO Evaluate all candidate variables and issue warnings. The procedure evaluates all

candidate variables and determines if they are fixed. If a variable is listed on the FIXED
subcommand but it is not actually fixed (that is, it varies within the row group), a warning
message is displayed and the command is not executed. If a variable is not listed on the
FIXED subcommand but it is actually fixed (that is, it does not vary within the row group),
a warning message is displayed and the command is executed. The variable is classified
as the source of a variable group and becomes a variable group in the new data file.

RENAME Subcommand

CASESTOVARS creates variable groups with new variables. The first part of the new variable
name is either derived from the name of the original variable or is the rootname specified on
the RENAME subcommand.

The specification is the original variable name followed by a rootname.

The named variable cannot be a SPLIT FILE variable and cannot appear on the ID, FIXED,
INDEX, or DROP subcommands.

A variable can be renamed only once.

Only one RENAME subcommand can be used, but it can contain multiple specifications.

SEPARATOR Subcommand

CASESTOVARS creates variable groups that contain new variables. There are two parts to the
name of a new variable—a rootname and an index. The parts are separated by a string. The
separator string is specified on the SEPARATOR subcommand.

If a separator is not specified, the default is a period.
A separator can contain multiple characters.
The separator must be delimited by apostrophes or quotation marks.

You can suppress the separator by specifying / SEPARATOR="".

200

CASESTOVARS

GROUPBY Subcommand

The GROUPBY subcommand controls the order of the new variables in the new data file.

VARIABLE Group new variables by original variable. The procedure groups all variables

created from an original variable together. This is the default.

INDEX Group new variables by index variable. The procedure groups variables
according to the index variables.

Example

If the original variables are:

insure caseid month bps bpd

and the data are as shown in the first example, the commands:

SPLIT FILE BY insure.

CASESTOVARS
/ID=caseid
/INDEX=month
/GROUPBY=VARIABLE.

create a new data file with the following variable order:

B Variables are grouped by variable group—bps and bpd.

Example

Using the same original data, the commands:

SPLIT FILE BY insure.

CASESTOVARS
/ID=insure caseid
/INDEX=month
/GROUPBY=INDEX.

create a new data file with the following variable order:

B Variables are grouped by values of the index variable month—1, 2, and 3.

DROP Subcommand

The DROP subcommand specifies the subset of variables to exclude from the new data file.
B You can drop variables that appear on the TD list.

B Variables listed on the DROP subcommand may not appear on the FIXED or INDEX
subcommand.

® Dropped variables are not candidates to become a variable group in the new data file.

B You cannot drop all variables. The new data file is required to have at least one variable.

CATPCA

CATPCA is available in the Categories option.

CATPCA VARIABLES = varlist

/ANALYSIS varlist
[[(WEIGHT={1**}] [LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}]]

{n 1} {n} {n}
{SPNOM } [DEGREE={2}] [INKNOT={2}]
{n} {n}
{ORDI }
{NOMI }
{MNOM }
{NUME }
[/DISCRETIZATION = [varlist[([{GROUPING }1 [{NCAT={7} }] [DISTR={NORMAL }])]1]
{n}
{EQINTV={n} }
{RANKING }
{MULTIPLYING}
[/MISSING = [varlist [([{PASSIVE**}] [{MODEIMPU}])]]]
{EXTRACAT}
{ACTIVE } {MODEIMPU}
{EXTRACAT}
{LISTWISE}
[/SUPPLEMENTARY = [OBJECT (varlist)] [VARIABLE (varlist)]]
[/CONFIGURATION = [{INITIAL}] (file)]
{FIXED }
[/DIMENSION = {2%*}]
{n 1}
[/NORMALIZATION = {VPRINCIPAL**}]
{OPRINCIPAL }
{SYMMETRICAL }
{INDEPENDENT }
{n }
[/MAXITER = {100**}]
{n }
[/CRITITER = {.00001**}]
{value }
[/PRINT = [DESCRIP**[(varlist)]] [VAF] [LOADING**] [QUANT[(varlist)]][HISTORY]
[CORR**] [OCORR] [OBJECTI[([(varname)]varlist)]] [NONE]]
[/PLOT = [OBJECT**[(varlist)][(n)]]
[LOADING** [(varlist [(CENTR[(varlist)])1)1[(n)]1]
[CATEGORY (varlist)[(n)]]
[JOINTCAT[({varlist})][(n)]]
[TRANS [(varlist[({1})])[(n)]]
{n}
[BIPLOT[({LOADING} [(varlist)]) [(varlist)]] [(n)]]
{CENTR }
[TRIPLOT[(varlist[(varlist)])]l[(n)]]
[RESID(varlist[({1})])[(n)]]
{n}
[PROJCENTR (varname, varlist)[(n)]] [NONE]]
[NDIM (value,value)]
[/SAVE = [TRDATA[({TRA }[(n)])]1] [OBJECT[({OBSCO Jm)1) 11 1
{rootname} {rootname}

[APPROX [({APP 111
{rootname}

201

202

CATPCA
[/OUTFILE = [TRDATA[('savfile'|'dataset')]] [DISCRDATA[('savfile'|'dataset')]]
[OBJECT[('savfile'|'dataset')]] [APPROX[('savfile'|'dataset')]]].
** Default if the subcommand is omitted.
This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.
Overview

CATPCA performs principal components analysis on a set of variables. The variables can be
given mixed optimal scaling levels, and the relationships among observed variables are not
assumed to be linear.

In caTpCa, dimensions correspond to components (that is, an analysis with two dimensions
results in two components), and object scores correspond to component scores.

Options

Optimal Scaling Level. You can specify the optimal scaling level at which you want to analyze
each variable (levels include spline ordinal, spline nominal, ordinal, nominal, multiple nominal,
or numerical).

Discretization. You can use the DISCRETIZATION subcommand to discretize fractional-value
variables or to recode categorical variables.

Missing Data. You can use the MISSING subcommand to specify the treatment of missing data on
a per-variable basis.

Supplementary Objects and Variables. You can specify objects and variables that you want to treat
as supplementary to the analysis and then fit them into the solution.

Read Configuration. CATPCA can read a configuration from a file through the CONFIGURATION
subcommand. This information can be used as the starting point for your analysis or as a fixed
solution in which to fit variables.

Number of Dimensions. You can specify how many dimensions (components) CATPCA should
compute.

Normalization. You can specify one of five different options for normalizing the objects and
variables.

Algorithm Tuning. You can use the MAXITER and CRITITER subcommands to control the values
of algorithm-tuning parameters.

Optional Output. You can request optional output through the PRINT subcommand.

Optional Plots. You can request a plot of object points, transformation plots per variable, and plots
of category points per variable or a joint plot of category points for specified variables. Other
plot options include residuals plots, a biplot, a triplot, component loadings plot, and a plot of
projected centroids.

203
CATPCA

Writing Discretized Data, Transformed Data, Object (Component) Scores, and Approximations. You
can write the discretized data, transformed data, object scores, and approximations to external
files for use in further analyses.

Saving Transformed Data, Object (Component) Scores, and Approximations. You can save the
transformed variables, object scores, and approximations to the working data file.

Basic Specification

The basic specification is the CATPCA command with the VARIABLES and ANALYSIS
subcommands.

Syntax Rules
B The VARIABLES and ANALYSIS subcommands must always appear.
m All subcommands can be specified in any order.

B Variables that are specified in the ANALYSIS subcommand must be found in the VARIABLES
subcommand.

B Variables that are specified in the SUPPLEMENTARY subcommand must be found in the
ANALYSIS subcommand.

Operations

m [f a subcommand is repeated, it causes a syntax error, and the procedure terminates.

Limitations

B CATPCA operates on category indicator variables. The category indicators should be positive
integers. You can use the DISCRETIZATION subcommand to convert fractional-value
variables and string variables into positive integers.

® In addition to system-missing values and user-defined missing values, category indicator
values that are less than 1 are treated by CATPCA as missing. If one of the values of a
categorical variable has been coded 0 or a negative value and you want to treat it as a
valid category, use the COMPUTE command to add a constant to the values of that variable
such that the lowest value will be 1 (see the COMPUTE command or the SPSS Base Users
Guide for more information about COMPUTE). You can also use the RANKING option of the
DISCRETIZATION subcommand for this purpose, except for variables that you want to treat
as numeric, because the characteristic of equal intervals in the data will not be maintained.

® There must be at least three valid cases.

m Split-file has no implications for CATPCA.

Example

CATPCA VARIABLES = TEST1 TEST2 TEST3 TO TEST6 TEST7 TESTS8
/ANALYSIS = TEST1 TO TEST2 (WEIGHT=2 LEVEL=ORDI)
TEST3 TO TEST5 (LEVEL=SPORD INKNOT=3)
TEST6 TEST7 (LEVEL=SPORD DEGREE=3)
TESTS8 (LEVEL=NUME)
/DISCRETIZATION = TEST1 (GROUPING NCAT=5 DISTR=UNIFORM)

204

CATPCA

TEST6 (GROUPING) TEST8 (MULTIPLYING)
/MISSING = TEST5(ACTIVE) TEST6 (ACTIVE EXTRACAT) TEST8 (LISTWISE)
/ SUPPLEMENTARY OBJECT (1 3) VARIABLE (TEST1)
/CONFIGURATION ('iniconf.sav')
/DIMENSION = 2
/NORMALIZATION = VPRINCIPAL
/MAXITER = 150
/JCRITITER = .000001
/PRINT = DESCRIP LOADING CORR QUANT (TEST1 TO TEST3) OBJECT
/PLOT = TRANS (TEST2 TO TEST5) OBJECT (TEST2 TEST3)
/SAVE = TRDATA OBJECT
/OUTFILE = TRDATA('c:\data\trans.sav') OBJECT('c:\data\obs.sav').

VARIABLES defines variables. The keyword TO refers to the order of the variables in the
working data file.

The ANALYSIS subcommand defines variables that are used in the analysis. TEST! and
TEST?2 have a weight of 2. For the other variables, WEIGHT is not specified; thus, they have
the default weight value of 1. The optimal scaling level for TESTI and TEST?2 is ordinal. The
optimal scaling level for TEST3 to TEST7 is spline ordinal. The optimal scaling level for
TESTS is numerical. The keyword TO refers to the order of the variables in the VARIABLES
subcommand. The splines for TEST3 to TESTS have degree 2 (default because unspecified)
and 3 interior knots. The splines for TEST6 and TEST7 have degree 3 and 2 interior knots
(default because unspecified).

DISCRETIZATION specifies that TEST6 and TESTS, which are fractional-value variables, are
discretized: TEST6 by recoding into 7 categories with a normal distribution (default because
unspecified) and TESTS by “multiplying.” TESTI, which is a categorical variable, is recoded
into 5 categories with a close-to-uniform distribution.

MISSING specifies that objects with missing values on TESTS and TEST6 are included in the
analysis; missing values on TESTS are replaced with the mode (default if not specified), and
missing values on TEST6 are treated as an extra category. Objects with a missing value on
TESTS are excluded from the analysis. For all other variables, the default is in effect; that is,
missing values (not objects) are excluded from the analysis.

CONFIGURATION specifies iniconf.sav as the file containing the coordinates of a configuration
that is to be used as the initial configuration (default because unspecified).

DIMENSION specifies 2 as the number of dimensions; that is, 2 components are computed.
This setting is the default, so this subcommand could be omitted here.

The NORMALIZATION subcommand specifies optimization of the association between
variables. This setting is the default, so this subcommand could be omitted here.

MAXITER specifies 150 as the maximum number of iterations (instead of the default value of
100).
CRITITER sets the convergence criterion to a value that is smaller than the default value.

PRINT specifies descriptives, component loadings and correlations (all default),
quantifications for TEST! to TEST3, and the object (component) scores.

PLOT requests transformation plots for the variables TEST2 to TESTS, an object points plot
labeled with the categories of TEST2, and an object points plot labeled with the categories
of TEST3.

205

CATPCA
The SAVE subcommand adds the transformed variables and the component scores to the
working data file.

The OUTFILE subcommand writes the transformed data to a data file called trans.sav and
writes the component scores to a data file called obs.sav, both in the directory c:\data.

VARIABLES Subcommand

VARIABLES specifies the variables that may be analyzed in the current CATPCA procedure.

The VARIABLES subcommand is required.

At least two variables must be specified, except when the CONFIGURATION subcommand
is used with the FIXED keyword.

The keyword TO on the VARIABLES subcommand refers to the order of variables in the

working data file. This behavior of TO is different from the behavior in the variable list
in the ANALYSIS subcommand.

ANALYSIS Subcommand

ANALYSIS specifies the variables to be used in the computations, the optimal scaling level, and
the variable weight for each variable or variable list. ANALYSIS also specifies supplementary
variables and their optimal scaling level. No weight can be specified for supplementary variables.

At least two variables must be specified, except when the CONFIGURATTION subcommand
is used with the FIXED keyword.

All variables on ANALYSIS must be specified on the VARTABLES subcommand.
The ANALYSIS subcommand is required.

The keyword TO in the variable list honors the order of variables in the VARTIABLES
subcommand.

Optimal scaling levels and variable weights are indicated by the keywords LEVEL and
WEIGHT in parentheses following the variable or variable list.

WEIGHT Specifies the variable weight with a positive integer. The default value is 1. If

WEIGHT is specified for supplementary variables, it is ignored, and a syntax warning
is issued.

LEVEL Specifies the optimal scaling level.

206

CATPCA

Level Keyword

The following keywords are used to indicate the optimal scaling level:

SPORD

SPNOM

MNOM

ORDI

NOMI

NUME

Spline ordinal (monotonic). This setting is the default. The order of the categories of the
observed variable is preserved in the optimally scaled variable. Category points will lie
on a straight line (vector) through the origin. The resulting transformation is a smooth
monotonic piecewise polynomial of the chosen degree. The pieces are specified by the
user-specified number and procedure-determined placement of the interior knots.

Spline nominal (nonmonotonic). The only information in the observed variable that

is preserved in the optimally scaled variable is the grouping of objects in categories.
The order of the categories of the observed variable is not preserved. Category points
will lie on a straight line (vector) through the origin. The resulting transformation is a
smooth, possibly nonmonotonic, piecewise polynomial of the chosen degree. The pieces
are specified by the user-specified number and procedure-determined placement of the
interior knots.

Multiple nominal. The only information in the observed variable that is preserved

in the optimally scaled variable is the grouping of objects in categories. The order of
the categories of the observed variable is not preserved. Category points will be in the
centroid of the objects in the particular categories. Multiple indicates that different sets of
quantifications are obtained for each dimension.

Ordinal. The order of the categories on the observed variable is preserved in the optimally
scaled variable. Category points will lie on a straight line (vector) through the origin. The
resulting transformation fits better than SPORD transformation but is less smooth.

Nominal. The only information in the observed variable that is preserved in the optimally
scaled variable is the grouping of objects in categories. The order of the categories of the
observed variable is not preserved. Category points will lie on a straight line (vector)
through the origin. The resulting transformation fits better than SPNOM transformation
but is less smooth.

Numerical. Categories are treated as equally spaced (interval level). The order of the
categories and the equal distances between category numbers of the observed variables
are preserved in the optimally scaled variable. Category points will lie on a straight line
(vector) through the origin. When all variables are scaled at the numerical level, the
CATPCA analysis is analogous to standard principal components analysis.

SPORD and SPNOM Keywords

The following keywords are used with SPORD and SPNOM:

DEGREE
INKNOT

The degree of the polynomial. Tt can be any positive integer. The default degree is 2.

The number of interior knots. The minimum is 0, and the maximum is the
number of categories of the variable minus 2. If the specified value is too large,
the procedure adjusts the number of interior knots to the maximum. The default
number of interior knots is 2.

DISCRETIZATION Subcommand

DISCRETIZATION specifies fractional-value variables that you want to discretize. Also, you can
use DISCRETIZATION for ranking or for two ways of recoding categorical variables.

B A string variable’s values are always converted into positive integers, according to the internal
numeric representations. DISCRETIZATION for string variables applies to these integers.

207
CATPCA

®m When the DISCRETIZATION subcommand is omitted or used without a variable list,
fractional-value variables are converted into positive integers by grouping them into seven
categories with a distribution of close to “normal.”

B When no specification is given for variables in a variable list following DISCRETIZATION,
these variables are grouped into seven categories with a distribution of close to “normal.”

B In CATPCA, values that are less than 1 are considered to be missing (see MISSING
subcommand). However, when discretizing a variable, values that are less than 1 are
considered to be valid and are thus included in the discretization process.

GROUPING Recode into the specified number of categories or recode intervals of equal
size into categories.

RANKING Rank cases. Rank 1 is assigned to the case with the smallest value on the
variable.

MULTIPLYING Multiply the standardized values of a fractional-value variable by 10, round,

and add a value such that the lowest value is 1.

GROUPING Keyword

GROUPING has the following keywords:

NCAT Number of categories. When NCAT is not specified, the number of categories is
set to 7.
EQINTV Recode intervals of equal size. The size of the intervals must be specified (no

default). The resulting number of categories depends on the interval size.

NCAT Keyword

NCAT has the keyword DISTR, which has the following keywords:

NORMAL Normal distribution. This setting is the default when DISTR is not specified.
UNIFORM Uniform distribution.

208

CATPCA

MISSING Subcommand

In caTPCA, we consider a system-missing value, user-defined missing values, and values that
are less than 1 as missing values. The MISSING subcommand allows you to indicate how to
handle missing values for each variable.

PASSIVE

ACTIVE

LISTWISE

Exclude missing values on a variable from analysis. This setting is the default
when MISSING is not specified. Passive treatment of missing values means that in
optimizing the quantification of a variable, only objects with nonmissing values on
the variable are involved and that only the nonmissing values of variables contribute
to the solution. Thus, when PASSIVE is specified, missing values do not affect the
analysis. Further, if all variables are given passive treatment of missing values,
objects with missing values on every variable are treated as supplementary.

Impute missing values. You can choose to use mode imputation. You can also
consider objects with missing values on a variable as belonging to the same category
and impute missing values with an extra category indicator.

Exclude cases with missing values on a variable. The cases that are used in the
analysis are cases without missing values on the specified variables. Also, any
variable that is not included in the subcommand receives this specification.

m The ALL keyword may be used to indicate all variables. If ALL is used, it must be the only
variable specification.

B A mode or extracat imputation is done before listwise deletion.

PASSIVE Keyword

If correlations are requested on the PRINT subcommand, and passive treatment of missing values
is specified for a variable, the missing values must be imputed. For the correlations of the
quantified variables, you can specify the imputation with one of the following keywords:

MODEIMPU

EXTRACAT

Impute missing values on a variable with the mode of the quantified variable.
MODEIMPU is the default.

Impute missing values on a variable with the quantification of an extra category.
This treatment implies that objects with a missing value are considered to belong
to the same (extra) category.

Note that with passive treatment of missing values, imputation applies only to correlations and is
done afterward. Thus, the imputation has no effect on the quantification or the solution.

ACTIVE Keyword

The AcTIVE keyword has the following keywords:

MODEIMPU

EXTRACAT

Impute missing values on a variable with the most frequent category (mode). When
there are multiple modes, the smallest category indicator is used. MODEIMPU is
the default.

Impute missing values on a variable with an extra category indicator. This implies
that objects with a missing value are considered to belong to the same (extra)
category.

209

CATPCA

Note that with active treatment of missing values, imputation is done before the analysis starts
and thus will affect the quantification and the solution.

SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the objects and/or variables that you want to treat
as supplementary. Supplementary variables must be found in the ANALYSIS subcommand.
You cannot weight supplementary objects and variables (specified weights are ignored). For
supplementary variables, all options on the MISSTING subcommand can be specified except

LISTWISE.

OBJECT

VARIABLE

Objects that you want to treat as supplementary are indicated with an object number
list in parentheses following OBJECT. The keyword T0 is allowed. The OBJECT
specification is not allowed when CONFIGURATION = FIXED.

Variables that you want to treat as supplementary are indicated with a variable list
in parentheses following VARIABLE. The keyword TO is allowed and honors the
order of variables in the VARIABLES subcommand. The VARIABLE specification is
ignored when CONFIGURATION = FIXED, because in that case all variables in the
ANALYSIS subcommand are automatically treated as supplementary variables.

CONFIGURATION Subcommand

The CONFIGURATION subcommand allows you to read data from a file containing the coordinates
of a configuration. The first variable in this file should contain the coordinates for the first
dimension, the second variable should contain the coordinates for the second dimension, and so

forth.

INITIAL(file)
FIXED(file)

Use the configuration in the external file as the starting point of the analysis.

Fit variables in the fixed configuration that is found in the external file. The
variables to fit in should be specified on the ANALYSTS subcommand but will be
treated as supplementary. The SUPPLEMENTARY subcommand and variable weights
are ignored.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions (components) that you want CATPCA to compute.

m The default number of dimensions is 2.

B DIMENSION is followed by an integer indicating the number of dimensions.

m [f there are no variables specified as MNOM (multiple nominal), the maximum number of
dimensions that you can specify is the smaller of the number of observations minus 1 and the
total number of variables.

m [fsome or all of the variables are specified as MNOM (multiple nominal), the maximum number
of dimensions is the smaller of a) the number of observations minus 1 and b) the total number
of valid MNOM variable levels (categories) plus the number of SPORD, SPNOM, ORDI, NOMI,
and NUME variables minus the number of MNOM variables (if the MNOM variables do not have
missing values to be treated as passive). If there are MNOM variables with missing values to be

210

CATPCA

treated as passive, the maximum number of dimensions is the smaller of a) the number of
observations minus 1 and b) the total number of valid MNOM variable levels (categories) plus
the number of SPORD, SPNOM, ORDI, NOMI, and NUME variables, minus the larger of ¢) 1 and
d) the number of MNOM variables without missing values to be treated as passive.

m [fthe specified value is too large, CATPCA adjusts the number of dimensions to the maximum.

B The minimum number of dimensions is 1.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five options for normalizing the object
scores and the variables. Only one normalization method can be used in a given analysis.

VPRINCIPAL

OPRINCIPAL

SYMMETRICAL

INDEPENDENT

This option optimizes the association between variables. With VPRINCIPAL,
the coordinates of the variables in the object space are the component loadings
(correlations with object scores) for SPORD, SPNOM, ORDI, NOMI, and NUME
variables, and the centroids for MNOM variables. This setting is the default if
the NORMALIZATION subcommand is not specified. This setting is useful
when you are primarily interested in the correlations between the variables.

This option optimizes distances between objects. This setting is useful when
you are primarily interested in differences or similarities between the objects.

Use this normalization option if you are primarily interested in the relation
between objects and variables.

Use this normalization option if you want to examine distances between
objects and correlations between variables separately.

The fifth method allows the user to specify any real value in the closed interval [-1, 1]. A value
of 1 is equal to the OPRINCIPAL method, a value of 0 is equal to the SYMMETRICAL method, and
a value of —1 is equal to the VPRINCIPAL method. By specifying a value that is greater than —1
and less than 1, the user can spread the eigenvalue over both objects and variables. This method
is useful for making a tailor-made biplot or triplot. If the user specifies a value outside of this
interval, the procedure issues a syntax error message and terminates.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations that the procedure can go through in its
computations. If not all variables are specified as NUME and/or MNOM, the output starts from
iteration 0, which is the last iteration of the initial phase, in which all variables except MNOM
variables are treated as NUME.

B [f MAXITER is not specified, the maximum number of iterations is 100.

m The specification on MAXITER is a positive integer indicating the maximum number of
iterations. There is no uniquely predetermined (that is, hard-coded) maximum for the value

that can be used.

21
CATPCA

CRITITER Subcommand

CRITITER specifies a convergence criterion value. CATPCA stops iterating if the difference in fit
between the last two iterations is less than the CRITITER value.

m [f CRITITER is not specified, the convergence value is 0.00001.

® The specification on CRITITER is any positive value.

PRINT Subcommand

The Model Summary (Cronbach’s alpha and Variance Accounted For) and the HISTORY statistics
(the variance accounted for, the loss, and the increase in variance accounted for) for the initial
solution (if applicable) and last iteration are always displayed. That is, they cannot be controlled
by the PRINT subcommand. The PRINT subcommand controls the display of additional optional
output. The output of the procedure is based on the transformed variables. However, the keyword
OCORR can be used to request the correlations of the original variables, as well.

The default keywords are DESCRIP, LOADING, and CORR. However, when some keywords
are specified, the default is nullified and only what was specified comes into effect. If a keyword
is duplicated or if a contradicting keyword is encountered, the last specified keyword silently
becomes effective (in case of contradicting use of NONE, only the keywords following NONE are
effective). An example is as follows:

/PRINT <=> /PRINT = DESCRIP LOADING CORR
/PRINT = VAF VAF <=> /PRINT = VAF
/PRINT = VAF NONE CORR <=> /PRINT = CORR

If a keyword that can be followed by a variable list is duplicated, a syntax error occurs, and the
procedure will terminate.

The following keywords can be specified:

DESCRIP(varlist) Descriptive statistics (frequencies, missing values, and mode). The
variables in the varlist must be specified on the VARIABLES subcommand
but need not appear on the ANALYSIS subcommand. If DESCRIP is not
followed by a varlist, descriptives tables are displayed for all variables
in the varlist on the ANALYSIS subcommand.

VAF Variance accounted for (centroid coordinates, vector coordinates, and
total) per variable and per dimension.

LOADING Component loadings for variables with optimal scaling level that result
in vector quantification (that is, SPORD, SPNOM, ORDI, NOMI, and NUME).

QUANT (varlist) Category quantifications and category coordinates for each dimension.
Any variable in the ANALYSIS subcommand may be specified in
parentheses after QUANT. (For MNOM variables, the coordinates are the
quantifications.) If QUANT is not followed by a variable list, quantification
tables are displayed for all variables in the varlist on the ANALYSIS
subcommand.

212

CATPCA

HISTORY History of iterations. For each iteration (including 0, if applicable), the
variance accounted for, the loss (variance not accounted for), and the
increase in variance accounted for are shown.

CORR Correlations of the transformed variables and the eigenvalues of this
correlation matrix. If the analysis includes variables with optimal scaling
level MNOM, ndim (the number of dimensions in the analysis) correlation
matrices are computed; in the ith matrix, the quantifications of dimension
i,i=1, ... ndim, of MNOM variables are used to compute the correlations.
For variables with missing values specified to be treated as PASSIVE on
the MISSING subcommand, the missing values are imputed according to
the specification on the PASSTIVE keyword (if no specification is made,
mode imputation is used).

OCORR Correlations of the original variables and the eigenvalues of this
correlation matrix. For variables with missing values specified to be
treated as PASSTIVE on the MISSING subcommand, the missing values
are imputed with the variable mode.

OBJECT((varname)varlist) Object scores (component scores). Following the keyword, a varlist can
be given in parentheses to display variables (category indicators), along
with object scores. If you want to use a variable to label the objects, this
variable must occur in parentheses as the first variable in the varlist. If no
labeling variable is specified, the objects are labeled with case numbers.
The variables to display, along with the object scores and the variable
to label the objects, must be specified on the VARIABLES subcommand
but need not appear on the ANALYSTS subcommand. If no variable list
is given, only the object scores are displayed.

NONE No optional output is displayed. The only output that is shown is the
model summary and the HISTORY statistics for the initial iteration (if
applicable) and last iteration.

The keyword TO in a variable list can only be used with variables that are in the ANALYSTIS
subcommand, and TO applies only to the order of the variables in the ANALYSTS subcommand.
For variables that are in the VARIABLES subcommand but not in the ANALYSTIS subcommand,
the keyword TO cannot be used. For example, if /VARIABLES = v1 TO v5 and /ANALYSIS
= v2 vl v4,then /PLOT OBJECT (vl TO v4) will give two object plots (one plot labeled
with v/ and one plot labeled with v4).

PLOT Subcommand

The PLOT subcommand controls the display of plots. The default keywords are OBJECT and
LOADING. That is, the two keywords are in effect when the PLOT subcommand is omitted or when
the PLOT subcommand is given without any keyword. If a keyword is duplicated (for example,
/PLOT = RESID RESID), only the last keyword is effective. If the keyword NONE is used with
other keywords (for example, /PLOT = RESID NONE LOADING), only the keywords following
NONE are effective. When keywords contradict, the later keyword overwrites the earlier keywords.

m All the variables to be plotted must be specified on the ANALYSIS subcommand.

m [f the variable list following the keywords CATEGORIES, TRANS, RESID, and PROJCENTR is
empty, it will cause a syntax error, and the procedure will terminate.

213

CATPCA

The variables in the variable list for labeling the object point following OBJECT, BIPLOT,
and TRIPLOT must be specified on the VARIABLES subcommand but need not appear on
the ANATLYSIS subcommand. This flexibility means that variables that are not included in
the analysis can still be used to label plots.

The keyword T0 in a variable list can only be used with variables that are in the ANALYSTS
subcommand, and TO applies only to the order of the variables in the ANALYSIS
subcommand. For variables that are in the VARIABLES subcommand but not in the
ANALYSIS subcommand, the keyword TO cannot be used. For example, if /VARIABLES =
vl TO v5 and /ANALYSIS = v2 vl v4,then /PLOT OBJECT (vl TO v4) will give
two object plots, one plot labeled with v/ and one plot labeled with v4.

For multidimensional plots, all of the dimensions in the solution are produced in a matrix
scatterplot if the number of dimensions in the solution is greater than 2 and the NDIM plot
keyword is not specified; if the number of dimensions in the solution is 2, a scatterplot is
produced.

The following keywords can be specified:

OBJECT (varlist)(n) Plots of the object points. Following the keyword, a list of variables in

parentheses can be given to indicate that plots of object points labeled
with the categories of the variables should be produced (one plot for
each variable). The variables to label the objects must be specified on
the VARIABLES subcommand but need not appear on the ANALYSIS
subcommand. If the variable list is omitted, a plot that is labeled with
case numbers is produced.

CATEGORY (varlist)(n) Plots of the category points. Both the centroid coordinates and the vector

coordinates are plotted. A list of variables must be given in parentheses
following the keyword. For variables with optimal scaling level MNOM,
categories are in the centroids of the objects in the particular categories.
For all other optimal scaling levels, categories are on a vector through

the origin.
LOADING(varlist Plot of the component loadings optionally with centroids. By default, all
(CENTR(varlist)))(1) variables with an optimal scaling level that results in vector quantification

(that is, SPORD, SPNOM, ORDI, NOMI, and NUME) are included in this plot.
LOADING can be followed by a varlist to select the loadings to include in
the plot. When "LOADING (" or the varlist following "LOADING (" is
followed by the keyword CENTR in parentheses, centroids are included
in the plot for all variables with optimal scaling level MNOM. CENTR can
be followed by a varlist in parentheses to select MNOM variables whose
centroids are to be included in the plot. When all variables have the
MNOM scaling level, this plot cannot be produced.

TRANS(varlist(n))(n) Transformation plots per variable (optimal category quantifications

against category indicators). Following the keyword, a list of variables
in parentheses must be given. MNOM variables in the varlist can be
followed by a number of dimensions in parentheses to indicate that you
want to display p transformation plots, one plot for each of the first p
dimensions. If the number of dimensions is not specified, a plot for the
first dimension is produced.

RESID(varlist(n))(n) Plot of residuals per variable (approximation against optimal category

quantifications). Following the keyword, a list of variables in parentheses
must be given. MNOM variables in the varlist can be followed by a number
of dimensions in parentheses to indicate that you want to display p
residual plots, one plot for each of the first p dimensions. If the number
of dimensions is not specified, a plot for the first dimension is produced.

214

CATPCA

BIPLOT (keyword(varlist))
(varlist)(n)

TRIPLOT (varlist(varlist))(n)

JOINTCAT (varlist)(n)

PROJCENTR(varname,
varlist)(n)

NONE

Plot of objects and variables. The coordinates for the variables can be
chosen to be component loading or centroids, using the LOADING or
CENTR keyword in parentheses following BIPLOT. When no keyword
is given, component loadings are plotted. When NORMALIZATION

= INDEPENDENT, this plot is incorrect and therefore not available.
Following LOADING or CENTR, a list of variables in parentheses can be
given to indicate the variables to be included in the plot. If the variable
list is omitted, a plot including all variables is produced. Following
BIPLOT, a list of variables in parentheses can be given to indicate that
plots with objects that are labeled with the categories of the variables
should be produced (one plot for each variable). The variables to label
the objects must be specified on the VARIABLES subcommand but need
not appear on the ANALYSIS subcommand. If the variable list is omitted,
a plot with objects labeled with case numbers is produced.

A plot of object points, component loadings for variables with an
optimal scaling level that results in vector quantification (that is, SPORD,
SPNOM, ORDI, NOMI, and NUME), and centroids for variables with
optimal scaling level MNOM. Following the keyword, a list of variables
in parentheses can be given to indicate the variables to include in the
plot. If the variable list is omitted, all variables are included. The varlist
can contain a second varlist in parentheses to indicate that triplots with
objects labeled with the categories of the variables in this variable list
should be produced (one plot for each variable). The variables to label
the objects must be specified on the VARIABLES subcommand but need
not appear on the ANALYSTIS subcommand. If this second variable list
is omitted, a plot with objects labeled with case numbers is produced.
When NORMALIZATION = INDEPENDENT, this plot is incorrect and
therefore not available.

Joint plot of the category points for the variables in the varlist. If no
varlist is given, the category points for all variables are displayed.

Plot of the centroids of a variable projected on each of the variables

in the varlist. You cannot project centroids of a variable on variables
with MNOM optimal scaling level; thus, a variable that has MNOM optimal
scaling level can be specified as the variable to be projected but not in the
list of variables to be projected on. When this plot is requested, a table
with the coordinates of the projected centroids is also displayed.

No plots.

For all keywords except NONE, the user can specify an optional parameter / in parentheses

after the variable list in order to control the global upper boundary of variable name/label and
value label lengths in the plot. Note that this boundary is applied uniformly to all variables
in the list. The label length parameter / can take any non-negative integer that is less than

or equal to the applicable maximum length (64 for variable names, 255 for variable labels,
and 60 for value labels). If / = 0, names/values instead of variable/value labels are displayed
to indicate variables/categories. If / is not specified, CATPCA assumes that each variable
name/label and value label is displayed at its full length. If / is an integer that is larger than
the applicable maximum, we reset it to the applicable maximum but do not issue a warning.
If a positive value of / is given but some or all variables/category values do not have labels,
then, for those variables/values, the names/values themselves are used as the labels.

215

CATPCA

In addition to the plot keywords, the following keyword can be specified:

NDIM(value,value) Dimension pairs to be plotted. NDIM is followed by a pair of values in

parentheses. If NDIM is not specified or is specified without parameter
values, a matrix scatterplot including all dimensions is produced.

m The first value (an integer that can range from 1 to the number of dimensions in the solution
minus 1) indicates the dimension that is plotted against higher dimensions.

m The second value (an integer that can range from 2 to the number of dimensions in the
solution) indicates the highest dimension to be used in plotting the dimension pairs.

m The NDIM specification applies to all requested multidimensional plots.

BIPLOT Keyword

BIPLOT takes the following keywords:

LOADING(varlist) Object points and component loadings.

CENTR(varlist) Object points and centroids.

SAVE Subcommand

The sAVE subcommand is used to add the transformed variables (category indicators that are
replaced with optimal quantifications), the object scores, and the approximation to the working
data file. Excluded cases are represented by a dot (the system-missing symbol) on every saved

variable.
TRDATA Transformed variables. Missing values that are specified to be treated as passive
are represented by a dot.
OBJECT Object (component) scores.
APPROX Approximation for variables that do not have optimal scaling level MNOM. For
variables with MNOM scaling level, the approximations in dimension s are the object
scores in dimension s.
m Following TRDATA, a rootname and the number of dimensions to be saved for variables that

are specified as MNOM can be specified in parentheses.

For variables that are not specified as MNOM, CATPCA adds two numbers separated by the
symbol . For variables that are specified as MNOM, CATPCA adds three numbers. The first
number uniquely identifies the source variable names, and the last number uniquely identifies
the CATPCA procedures with the successfully executed SAVE subcommands. For variables
that are specified as MNOM, the middle number corresponds to the dimension number (see the
next bullet for more details). Only one rootname can be specified, and it can contain up to
five characters for variables that are not specified as MNOM and three characters for variables
that are specified as MNOM. If more than one rootname is specified, the first rootname is used.
If a rootname contains more than five characters (MNOM variables), the first five characters are
used at most. If a rootname contains more than three characters (MNOM variables), the first
three characters are used at most.

216

CATPCA

If a rootname is not specified for TRDATA, rootname TRA is used to automatically generate
unique variable names. The formulas are ROOTNAMEk n and ROOTNAMEk m_n. In this
formula, k£ increments from 1 to identify the source variable names by using the source
variables’ position numbers in the ANALYSTS subcommand, m increments from 1 to identify
the dimension number, and # increments from 1 to identify the CATPCA procedures with the
successfully executed SAVE subcommands for a given data file in a continuous SPSS session.
For example, with three variables specified on ANALYSIS, LEVEL = MNOM for the second
variable, and with two dimensions to save, the first set of default names—if they do not
exist in the data file—would be TRA! 1, TRA2 1 1, TRA2 2 1, and TRA3 1. The next

set of default names—if they do not exist in the data file—would be TRA! 2, TRA2 1 2,
TRA2 2 2,and TRA3 2. However, if, for example, TRAI 2 already exists in the data file, the
default names should be attempted as TRAI 3, TRA2 1 3, TRA2 2 3, and TRA3 3. That
is, the last number increments to the next available integer.

Following OBJECT, a rootname and the number of dimensions can be specified in parentheses,
to which CATPCA adds two numbers separated by the symbol . The first number corresponds
to the dimension number. The second number uniquely identifies the CATPCA procedures
with the successfully executed SAVE subcommands (see the next bullet for more details).
Only one rootname can be specified, and it can contain up to five characters. If more than
one rootname is specified, the first rootname is used; if a rootname contains more than five
characters, the first five characters are used at most.

If a rootname is not specified for OBJECT, rootname OBSCO is used to automatically generate
unique variable names. The formula is ROOTNAMEm_n. In this formula, m increments
from 1 to identify the dimension number, and » increments from 1 to identify the CATPCA
procedures with the successfully executed SAVE subcommands for a given data file in a
continuous SPSS session. For example, if two dimensions are specified following OBJECT,
the first set of default names—if they do not exist in the data file—would be OBSCO! I and
OBSCO2 1. The next set of default names—if they do not exist in the data file—would be
OBSCOI 2 and OBSCOZ2 2. However, if, for example, OBSCO2 2 already exists in the data
file, the default names should be attempted as OBSCO! 3 and OBSCO2 3. That is, the
second number increments to the next available integer.

Following APPROX, a rootname can be specified in parentheses, to which CATPCA adds two
numbers separated by the symbol . The first number uniquely identifies the source variable
names, and the last number uniquely identifies the CATPCA procedures with the successfully
executed SAVE subcommands (see the next bullet for more details). Only one rootname can
be specified, and it can contain up to five characters. If more than one rootname is specified,
the first rootname is used; if a rootname contains more than five characters, the first five
characters are used at most.

If a rootname is not specified for APPROX, rootname APP is used to automatically generate
unique variable names. The formula is ROOTNAMEFk n. In this formula, £ increments from
1 to identify the source variable names by using the source variables’ position numbers in
the ANALYSIS subcommand. Additionally, # increments from 1 to identify the CATPCA
procedures with the successfully executed SAVE subcommands for a given data file in a
continuous SPSS session. For example, with three variables specified on ANALYSTS and
LEVEL = MNOM for the second variable, the first set of default names—if they do not exist in
the data file—would be APPI 1, APP2 1, and APP3 1. The next set of default names—if
they do not exist in the data file—would be APPI 2, APP2 2, and APP3 2. However, if, for
example, APP1_2 already exists in the data file, the default names should be attempted as

217
CATPCA

APP1 3, APP2 3, and APP3 3. That is, the last number increments to the next available
integer.

B Variable labels are created automatically. (They are shown in the Notes table and can also
be displayed in the Data Editor window.)

®m [f the number of dimensions is not specified, the SAVE subcommand saves all dimensions.

OUTFILE Subcommand

The OUTFILE subcommand is used to write the discretized data, transformed data (category
indicators replaced with optimal quantifications), the object scores, and the approximation
to a data file or previously declared data set. Excluded cases are represented by a dot (the
system-missing symbol) on every saved variable.

DISCRDATA Discretized data.

(‘savfile’|’dataset’)

TRDATA Transformed variables. This setting is the default if the OUTFILE

(‘savfile’|’dataset’) subcommand is specified with a filename and without a keyword. Missing
values that are specified to be treated as passive are represented by a dot.

OBJECT Object (component) scores.

(‘savfile’|’dataset’)

APPROX Approximation for variables that do not have optimal scaling level

(‘savfile’|’dataset’) MNOM.

m Filenames should be enclosed in quotes and are stored in the working directory unless a path
is included as part of the file specification. Data sets are available during the current session
but are not available in subsequent sessions unless you explicitly save them as data files. The
names should be different for each of the keywords.

In principle, the active data set should not be replaced by this subcommand, and the asterisk (*)
file specification is not supported. This strategy also prevents OUTFILE interference with the
SAVE subcommand.

CATREG

CATREG is available in the Categories option.

CATREG VARIABLES = varlist
/ANALYSIS
depvar [([LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}])]
{n} {n}
{SPNOM } [DEGREE={2}] [INKNOT={2}]
{n} {n}
{ORDI }
{NOMI }
{NUME }
WITH indvarlist [([LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}])]
{n} {n}
{SPNOM } [DEGREE={2}] [INKNOT={2}]
{n} {n}
{ORDI }
{NOMI }
{NUME }
[/DISCRETIZATION = [varlist [([{GROUPING }]1 [{NCAT*={7}}] [DISTR={NORMAL }])]]]
{n} {UNIFORM}
{EQINTV=d }
{RANKING }
{MULTIPLYING}
[/MISSING = [{varlist} ({LISTWISE**})]]
{ALL** } {MODEIMPU }
{EXTRACAT }
[/SUPPLEMENTARY = OBJECT (objlist)]
[/INITIAL = [{NUMERICAL**}]]
{RANDOM }
[/MAXITER = [{100**}]]
{n }
[/CRITITER = [{.00001%**}]]
{n }
[/PRINT = [R**] [COEFF**] [DESCRIP**[(varlist)]] [HISTORY] [ANOVA**]
[CORR] [OCORR] [QUANT[(varlist)]] [NONE]]
[/PLOT = {TRANS(varlist)[(h)]} {RESID(varlist)[(h)]1}]
[/SAVE = {TRDATA[({TRA })1} {PRED[({PRE })1} {RES[({RES 1131
{rootname} {rootname} {rootname}
[/OUTFILE = {TRDATA('savfile'|'dataset')} {DISCRDATA('savfile'|'dataset')}]

** Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

218

219

CATREG

Overview

CATREG (categorical regression with optimal scaling using alternating least squares) quantifies
categorical variables using optimal scaling, resulting in an optimal linear regression equation for
the transformed variables. The variables can be given mixed optimal scaling levels, and no
distributional assumptions about the variables are made.

Options

Transformation Type. You can specify the transformation type (spline ordinal, spline nominal,
ordinal, nominal, or numerical) at which you want to analyze each variable.

Discretization. You can use the DISCRETIZATION subcommand to discretize fractional-value
variables or to recode categorical variables.

Initial Configuration. You can specify the kind of initial configuration through the INITIAL
subcommand.

Tuning the Algorithm. You can control the values of algorithm-tuning parameters with the
MAXITER and CRITITER subcommands.

Missing Data. You can specify the treatment of missing data with the MISSING subcommand.
Optional Output. You can request optional output through the PRINT subcommand.

Transformation Plot per Variable. You can request a plot per variable of its quantification against
the category numbers.

Residual Plot per Variable. You can request an overlay plot per variable of the residuals and the
weighted quantification against the category numbers.

Wiriting External Data. You can write the transformed data (category numbers replaced with
optimal quantifications) to an outfile for use in further analyses. You can also write the discretized
data to an outfile.

Saving Variables. You can save the transformed variables, the predicted values, and/or the
residuals in the working data file.

Basic Specification

The basic specification is the command CATREG with the VARIABLES and ANALYSTIS
subcommands.

Syntax Rules

B The VARIABLES and ANALYSIS subcommands must always appear, and the VARIABLES
subcommand must be the first subcommand specified. The other subcommands, if specified,
can be in any order.

B Variables specified in the ANALYSTS subcommand must be found in the VARIABLES
subcommand.

B Inthe ANALYSTS subcommand, exactly one variable must be specified as a dependent variable
and at least one variable must be specified as an independent variable after the keyword WITH.

220
CATREG

B The word WITH is reserved as a keyword in the CATREG procedure. Thus, it may not be a
variable name in CATREG. Also, the word TO is a reserved word in SPSS.

Operations

m [fa subcommand is specified more than once, the last one is executed but with a syntax
warning. Note this is true also for the VARIABLES and ANALYSIS subcommands.

Limitations

m [f more than one dependent variable is specified in the ANALYSIS subcommand, CATREG is
not executed.

B CATREG operates on category indicator variables. The category indicators should be positive
integers. You can use the DISCRETIZATION subcommand to convert fractional-value
variables and string variables into positive integers. If DISCRETIZATION is not specified,
fractional-value variables are automatically converted into positive integers by grouping them
into seven categories with a close to normal distribution and string variables are automatically
converted into positive integers by ranking.

B In addition to system missing values and user defined missing values, CATREG treats category
indicator values less than 1 as missing. If one of the values of a categorical variable has been
coded 0 or some negative value and you want to treat it as a valid category, use the COMPUTE
command to add a constant to the values of that variable such that the lowest value will be
1. (See cCOMPUTE or the SPSS Base User’s Guide for more information on COMPUTE). You
can also use the RANKING option of the DISCRETIZATION subcommand for this purpose,
except for variables you want to treat as numerical, since the characteristic of equal intervals
in the data will not be maintained.

There must be at least three valid cases.
The number of valid cases must be greater than the number of independent variables plus 1.

The maximum number of independent variables is 200.

Split-File has no implications for CATREG.

Example

CATREG VARIABLES = TEST1 TEST3 TEST2 TEST4 TEST5 TEST6
TEST7 TO TESTY9 STATUSOl STATUSO02
/ANALYSIS TEST4 (LEVEL=NUME)
WITH TEST1 TO TEST2 (LEVEL=SPORD DEGREE=1 INKNOT=3)
TESTS5 TEST7 (LEVEL=SPNOM) TEST8 (LEVEL=ORDI)
STATUS01 STATUSO02 (LEVEL=NOMI)
/DISCRETIZATION = TEST1 (GROUPING NCAT=5 DISTR=UNIFORM)

TEST5 (GROUPING) TEST7 (MULTIPLYING)

/INITIAL = RANDOM
/MAXITER = 100
/CRITITER = .000001

/MISSING = MODEIMPU

/PRINT = R COEFF DESCRIP ANOVA QUANT (TEST1 TO TEST2 STATUS01l STATUS02)
/PLOT = TRANS (TEST2 TO TEST7 TEST4)

/ SAVE

/OUTFILE = 'c:\data\gdata.sav'.

221

CATREG

VARIABLES defines variables. The keyword TO refers to the order of the variables in the
working data file.

The ANALYSTS subcommand defines variables used in the analysis. It is specified that TEST4
is the dependent variable, with optimal scaling level numerical and that the variables TEST/,
TEST2, TEST3, TESTS, TEST7, TESTS, STATUS01, and STATUSO? are the independent
variables to be used in the analysis. (The keyword TO refers to the order of the variables in
the VARIABLES subcommand.) The optimal scaling level for TEST1, TEST2, and TEST3 is
spline ordinal; for TESTS5 and TEST7, spline nominal; for TESTS, ordinal; and for STATUS01
and STATUSO02, nominal. The splines for TEST! and TEST2 have degree 1 and three interior
knots, and the splines for TESTS and TEST7 have degree 2 and two interior knots (default
because unspecified).

DISCRETIZATION specifies that TESTS and TEST7, which are fractional-value variables,
are discretized: TESTS by recoding into seven categories with a normal distribution (default
because unspecified) and TEST7 by “multiplying.” TEST, which is a categorical variable, is
recoded into five categories with a close-to-uniform distribution.

Because there are nominal variables, a random initial solution is requested by the INITIAL
subcommand.

MAXITER specifies the maximum number of iterations to be 100. This is the default, so this
subcommand could be omitted here.

CRITITER sets the convergence criterion to a value smaller than the default value.

To include cases with missing values, the MISSING subcommand specifies that for each
variable, missing values are replaced with the most frequent category (the mode).

PRINT specifies the correlations, the coefficients, the descriptive statistics for all variables, the
ANOVA table, the category quantifications for variables TEST1, TEST2, TEST3, STATUSO01,
and STATUS(?2, and the transformed data list of all cases.

PLOT is used to request quantification plots for the variables TEST2, TESTS, TEST7, and
TESTA.

The SaAVE subcommand adds the transformed variables to the working data file. The names of
these new variables are TRANSI 1, ..., TRANSY 1.

The OUTFILE subcommand writes the transformed data to a data file called gdata.sav in
the directory c:\data.

VARIABLES Subcommand

VARIABLES specifies the variables that may be analyzed in the current CATREG procedure.

The VARIABLES subcommand is required and precedes all other subcommands.

The keyword TO on the VARIABLES subcommand refers to the order of variables in the
working data file. (Note that this behavior of TO is different from that in the indvarlist
on the ANALYSIS subcommand.)

222

CATREG

ANALYSIS Subcommand

ANALYSIS specifies the dependent variable and the independent variables following the keyword

WITH.

m All the variables on ANALYSIS must be specified on the VARIABLES subcommand.

B The ANALYSIS subcommand is required and follows the VARIABLES subcommand.

m The first variable list contains exactly one variable as the dependent variable, while the
second variable list following WITH contains at least one variable as an independent variable.
Each variable may have at most one keyword in parentheses indicating the transformation
type of the variable.

m The keyword TO in the independent variable list honors the order of variables on the
VARIABLES subcommand.

® Optimal scaling levels are indicated by the keyword LEVEL in parentheses following the
variable or variable list.

LEVEL

LEVEL Keyword

Specifies the optimal scaling level.

The following keywords are used to indicate the optimal scaling level:

SPORD

SPNOM

ORDI

NOMI

NUME

Spline ordinal (monotonic). This is the default for a variable listed without any optimal
scaling level, for example, one without LEVEL in the parentheses after it or with LEVEL
without a specification. Categories are treated as ordered. The order of the categories of
the observed variable is preserved in the optimally scaled variable. Categories will be on
a straight line through the origin. The resulting transformation is a smooth nondecreasing
piecewise polynomial of the chosen degree. The pieces are specified by the number

and the placement of the interior knots.

Spline nominal (non-monotonic). Categories are treated as unordered. Objects in the
same category obtain the same quantification. Categories will be on a straight line through
the origin. The resulting transformation is a smooth piecewise polynomial of the chosen
degree. The pieces are specified by the number and the placement of the interior knots.

Ordinal. Categories are treated as ordered. The order of the categories of the observed
variable is preserved in the optimally scaled variable. Categories will be on a straight line
through the origin. The resulting transformation fits better than SPORD transformation,
but is less smooth.

Nominal. Categories are treated as unordered. Objects in the same category obtain the
same quantification. Categories will be on a straight line through the origin. The resulting
transformation fits better than SPNOM transformation, but is less smooth.

Numerical. Categories are treated as equally spaced (interval level). The order of the
categories and the differences between category numbers of the observed variables are
preserved in the optimally scaled variable. Categories will be on a straight line through
the origin. When all variables are scaled at the numerical level, the CATREG analysis is
analogous to standard multiple regression analysis.

223
CATREG

SPORD and SPNOM Keywords

The following keywords are used with SPORD and SPNOM :

DEGREE The degree of the polynomial. 1f DEGREE is not specified the degree is assumed
to be 2.

INKNOT The number of the interior knots. If INKNOT is not specified the number of interior
knots is assumed to be 2.

DISCRETIZATION Subcommand

DISCRETIZATION specifies fractional-value variables that you want to discretize. Also, you can
use DISCRETIZATION for ranking or for two ways of recoding categorical variables.

B A string variable’s values are always converted into positive integers by assigning category
indicators according to the ascending alphanumeric order. DISCRETIZATION for string
variables applies to these integers.

B When the DISCRETIZATION subcommand is omitted, or when the DISCRETIZATION
subcommand is used without a varlist, fractional-value variables are converted into positive
integers by grouping them into seven categories (or into the number of distinct values of the
variable if this number is less than 7) with a close to normal distribution.

B When no specification is given for variables in a varlist following DISCRETIZATION, these
variables are grouped into seven categories with a close-to-normal distribution.

B In CATREG, a system-missing value, user-defined missing values, and values less than 1 are
considered to be missing values (see next section). However, in discretizing a variable,
values less than 1 are considered to be valid values, and are thus included in the discretization
process. System-missing values and user-defined missing values are excluded.

GROUPING Recode into the specified number of categories.

RANKING Rank cases. Rank 1 is assigned to the case with the smallest value on the
variable.

MULTIPLYING Multiplying the standardized values (z-scores) of a fractional-value variable

by 10, rounding, and adding a value such that the lowest value is 1.

GROUPING Keyword

NCAT Recode into ncat categories. When NCAT is not specified, the number of categories is
set to 7 (or the number of distinct values of the variable if this number is less than 7).
The valid range is from 2 to 36. You may either specify a number of categories or use
the keyword DISTR.

EQINTV Recode intervals of equal size into categories. The interval size must be specified (there
is no default value). The resulting number of categories depends on the interval size.

224

CATREG

DISTR Keyword
DISTR has the following keywords:
NORMAL Normal distribution. This is the default when DISTR is not specified.
UNIFORM Uniform distribution.

MISSING Subcommand

In CATREG, we consider a system missing value, user defined missing values, and values less
than 1 as missing values. However, in discretizing a variable (see previous section), values less
than 1 are considered as valid values. The MTSSING subcommand allows you to indicate how
to handle missing values for each variable.

LISTWISE Exclude cases with missing values on the specified variable(s). The cases used in
the analysis are cases without missing values on the variable(s) specified. This is
the default applied to all variables, when the MISSING subcommand is omitted or
is specified without variable names or keywords. Also, any variable that is not
included in the subcommand gets this specification.

MODEIMPU Impute missing value with mode. All cases are included and the imputations are
treated as valid observations for a given variable. When there are multiple modes,
the smallest mode is used.

EXTRACAT Impute missing values on a variable with an extra category indicator. This implies
that objects with a missing value are considered to belong to the same (extra)
category. This category is treated as nominal, regardless of the optimal scaling
level of the variable.

m The ALL keyword may be used to indicate all variables. If it is used, it must be the only
variable specification.

B A mode or extra-category imputation is done before listwise deletion.

SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the objects that you want to treat as supplementary.
You cannot weight supplementary objects (specified weights are ignored).

OBJECT Supplementary objects. Objects that you want to treat as supplementary are
indicated with an object number list in parentheses following OBJECT. The keyword
TO is allowed—for example, OBJECT (1 TO 1 3 5 TO 9).

225

CATREG
INITIAL Subcommand

INITIAL specifies the method used to compute the initial value/configuration.

m The specification on INITIAL is keyword NUMERICAL or RANDOM. If INITIAL is not
specified, NUMERICAL is the default.

NUMERICAL Treat all variables as numerical. This is usually best to use when there are only
numerical and/or ordinal variables.
RANDOM Provide a random initial value. This should be used only when there is at least

one nominal variable.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations CATREG can go through in its
computations. Note that the output starts from the iteration number 0, which is the initial value
before any iteration, when INITIAL = NUMERICAL is in effect.

B [f MAXITER is not specified, CATREG will iterate up to 100 times.

m The specification on MAXITER is a positive integer indicating the maximum number of

iterations. There is no uniquely predetermined (hard coded) maximum for the value that
can be used.

CRITITER Subcommand

CRITITER specifies a convergence criterion value. CATREG stops iterating if the difference in fit
between the last two iterations is less than the CRITITER value.

m [f CRITITER is not specified, the convergence value is 0.00001.

m The specification on CRITITER is any value less than or equal to 0.1 and greater than or
equal to 0.000001. (Values less than the lower bound might seriously affect performance.
Therefore, they are not supported.)

PRINT Subcommand

The PRINT subcommand controls the display of output. The output of the CATREG procedure is
always based on the transformed variables. However, the correlations of the original predictor
variables can be requested as well by the keyword 0CORR. The default keywords are R, COEFF,
DESCRIP, and ANOVA. That is, the four keywords are in effect when the PRINT subcommand
is omitted or when the PRINT subcommand is given without any keyword. If a keyword is

226

CATREG

duplicated or it encounters a contradicting keyword, such as /PRINT = R R NONE, then the
last one silently becomes effective.

R

COEFF

DESCRIP(varlist)

HISTORY

ANOVA

CORR
OCORR
QUANT (varlist)

NONE

Multiple R. Includes R2, adjusted R2, and adjusted R? taking the optimal
scaling into account.

Standardized regression coefficients (beta). This option gives three
tables: a Coefficients table that includes betas, standard error of the betas,
t values, and significance; a Coefficients-Optimal Scaling table, with the
standard error of the betas taking the optimal scaling degrees of freedom
into account; and a table with the zero-order, part, and partial correlation,
Pratt’s relative importance measure for the transformed predictors, and
the tolerance before and after transformation. If the tolerance for a
transformed predictor is lower than the default tolerance value in the
SPSS Regression procedure (0.0001) but higher than 10E—12, this is
reported in an annotation. If the tolerance is lower than 10E—12, then
the COEFF computation for this variable is not done and this is reported
in an annotation. Note that the regression model includes the intercept
coefficient but that its estimate does not exist because the coefficients
are standardized.

Descriptive statistics (frequencies, missing values, and mode). The
variables in the varlist must be specified on the VARIABLES
subcommand but need not appear on the ANALYSIS subcommand.
If DESCRIP is not followed by a varlist, Descriptives tables are
displayed for all of the variables in the variable list on the ANALYSIS
subcommand.

History of iterations. For each iteration, including the starting values for
the algorithm, the multiple R and the regression error (square root of
(1-multiple R2)) are shown. The increase in multiple R is listed from
the first iteration.

Analysis-of-variance tables. This option includes regression and residual
sums of squares, mean squares, and F. This options gives two ANOVA
tables: one with degrees of freedom for the regression equal to the
number of predictor variables and one with degrees of freedom for the
regression taking the optimal scaling into account.

Correlations of the transformed predictors.
Correlations of the original predictors.

Category quantifications. Any variable in the ANALYSIS subcommand
may be specified in parentheses after QUANT. If QUANT is not followed by
a varlist, Quantification tables are displayed for all variables in the
variable list on the ANALYSTS subcommand.

No PRINT output is shown. This is to suppress the default PRINT output.

B The keyword TO in a variable list can be used only with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS
subcommand. For variables that are in the VARTABLES subcommand but not in the
ANALYSIS subcommand, the keyword TO cannot be used. For example, if /VARIABLES
= vl TO v5and /ANALYSISisv2 vl v4,then /PRINT QUANT (vl TO v4) will give
two quantification plots, one for v/ and one for v4. (/PRINT QUANT (vl TO v4 v2 v3
v5) will give quantification tables for v/, v2, v3, v4, and v5.)

227
CATREG

PLOT Subcommand

The PLOT subcommand controls the display of plots.

® In this subcommand, if no plot keyword is given, then no plot is created. Further, if the
variable list following the plot keyword is empty, then no plot is created, either.

m All of the variables to be plotted must be specified in the ANALYSTS subcommand. Further,
for the residual plots, the variables must be independent variables.

TRANS(varlist)(I) Transformation plots (optimal category quantifications against category
indicators). A list of variables must come from the ANALYSIS variable
list and must be given in parentheses following the keyword. Further,
the user can specify an optional parameter 1 in parentheses after the
variable list in order to control the global upper boundary of category
label lengths in the plot. Note that this boundary is applied uniformly
to all transformation plots.

RESID(varlist)(l) Residual plots (residuals when the dependent variable is predicted from
all predictor variables in the analysis except the predictor variable
in varlist, against category indicators, and the optimal category
quantifications multiplied with beta against category indicators). A list
of variables must come from the ANALYSTIS variable list’s independent
variables and must be given in parentheses following the keyword.
Further, the user can specify an optional parameter 1 in parentheses after
the variable list in order to control the global upper boundary of category
label lengths in the plot. Note that this boundary is applied uniformly
to all residual plots.

m The category label length parameter (1) can take any non-negative integer less than or equal
to 60. If 1 = 0, values instead of value labels are displayed to indicate the categories on the x
axis in the plot. If 1 is not specified, CATREG assumes that each value label at its full length
is displayed as a plot’s category label. If 1 is an integer larger than 60, then we reset it
to 60 but do not issue a warning.

m [fa positive value of 1 is given but if some or all of the values do not have value labels, then
for those values, the values themselves are used as the category labels.

® The keyword TO in a variable list can be used only with variables that are in the ANALYSTS
subcommand, and TO applies only to the order of the variables in the ANALYSTIS
subcommand. For variables that are in the VARIABLES subcommand but not in the
ANALYSIS subcommand, the keyword TO cannot be used. For example, if /VARIABLES =
vl TO v5 and /ANALYSIS is v2 vl v4,then /PLOT TRANS (vl TO v4) will give
two transformation plots, one for v/ and for v4. (/PLOT TRANS (vl TO v4 v2 v3 v5)
will give transformation plots for vi, v2, v3, v4, and v5.)

SAVE Subcommand

The savE subcommand is used to add the transformed variables (category indicators replaced
with optimal quantifications), the predicted values, and the residuals to the working data file.

228

CATREG

Excluded cases are represented by a dot (the sysmis symbol) on every saved variable.

TRDATA Transformed variables.

PRED Predicted values.

RES Residuals.

® A variable rootname can be specified with each of the keywords. Only one rootname can

be specified with each keyword, and it can contain up to five characters (if more than one
rootname is specified with a keyword, the first rootname is used; if a rootname contains more
than five characters, the first five characters are used at most). If a rootname is not specified,
the default rootnames (TRA, PRE, and RES) are used.

CATREG adds two numbers separated by an underscore (_) to the rootname. The formula is
ROOTNAMEFK _n, where k increments from 1 to identify the source variable names by using
the source variables’ position numbers in the ANALYSIS subcommand (that is, the dependent
variable has the position number 1, and the independent variables have the position numbers
2,3, ..., etc., as they are listed), and # increments from 1 to identify the CATREG procedures
with the successfully executed SAVE subcommands for a given data file in a continuous SPSS
session. For example, with two predictor variables specified on ANALYSTS, the first set of
default names for the transformed data, if they do not exist in the data file, would be TRAI 1
for the dependent variable, and TRA2 I, TRA3 1 for the predictor variables. The next set
of default names, if they do not exist in the data file, would be TRAI 2, TRA2 2, TRA3 2.
However, if, for example, TRAI 2 already exists in the data file, then the default names
should be attempted as TRAI 3, TRA2 3, TRA3 3—that is, the last number increments to
the next available integer.

Variable labels are created automatically. (They are shown in the Procedure Information
Table (the Notes table) and can also be displayed in the Data Editor window.)

OUTFILE Subcommand

The OUTFILE subcommand is used to write the discretized data and/or the transformed data
(category indicators replaced with optimal quantifications) to a data file or previously declared
data set name. Excluded cases are represented by a dot (the sysmis symbol) on every saved

variable.

DISCRDATA(‘savfile’|’dataset’) Discretized data.

TRDATA(‘savfile’|’dataset’) Transformed variables.

m Filenames should be enclosed in quotes and are stored in the working directory unless a path

is included as part of the file specification. Data sets are available during the current session
but are not available in subsequent sessions unless you explicitly save them as data files.

An active data set, in principle, should not be replaced by this subcommand, and the asterisk
(*) file specification is not supported. This strategy also prevents the OUTFILE interference
with the SAVE subcommand.

CCF

CCF VARIABLES= series names [WITH series names]

[/DIFF={1}]
{n}

[/SDIFF={1}]
{n}

[/PERIOD=n]

[/ {NOLOG**}]
{LN }

[/SEASONAL]

[/MXCROSS={7%**}]
{n 1}

[/APPLY [='model name']]

**Default if the subcommand is omitted and there is no corresponding specification on the TSET
command.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

CCF VARIABLES = VARX VARY.

Overview

ccF displays and plots the cross-correlation functions of two or more time series. You can also
display and plot the cross-correlations of transformed series by requesting natural log and
differencing transformations within the procedure.

Options

Modifying the Series. You can request a natural log transformation of the series using the LN
subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF and
DIFF subcommands. With seasonal differencing, you can also specify the periodicity on the
PERIOD subcommand.

Statistical Display. You can control which series are paired by using the keyword WITH. You can
specify the range of lags for which you want values displayed and plotted with the MXCROSS
subcommand, overriding the maximum specified on TSET. You can also display and plot values
at periodic lags only using the SEASONAL subcommand.

229

230

CCF
Basic Specification
The basic specification is two or more series names. By default, CCF automatically displays the
cross-correlation coefficient and standard error for the negative lags (second series leading), the
positive lags (first series leading), and the 0 lag for all possible pair combinations in the series list.
It also plots the cross-correlations and marks the bounds of two standard errors on the plot. By
default, cCF displays and plots values up to 7 lags (lags —7 to +7), or the range specified on TSET.
Subcommand Order
® Subcommands can be specified in any order.
Syntax Rules
m The VARTABLES subcommand can be specified only once.
m Other subcommands can be specified more than once, but only the last specification of each
one is executed.
Operations
® Subcommand specifications apply to all series named on the CCF command.
m [f the LN subcommand is specified, any differencing requested on that CCF command is
done on the log-transformed series.
m Confidence limits are displayed in the plot, marking the bounds of two standard errors at
each lag.
Limitations
B A maximum of 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.
Example
CCF VARIABLES = VARX VARY
/LN
/DIFF=1
/SDIFF=1
/PERIOD=12

/MXCROSS=25.

m This example produces a plot of the cross-correlation function for VARX and VARY after a
natural log transformation, differencing, and seasonal differencing have been applied to
both series. Along with the plot, the cross-correlation coefficients and standard errors are
displayed for each lag.

LN transforms the data using the natural logarithm (base e) of each series.
DIFF differences each series once.

SDIFF and PERIOD apply one degree of seasonal differencing with a periodicity of 12.

MXCROSS specifies 25 for the maximum range of positive and negative lags for which output
is to be produced (lags —25 to +25).

231
CCF

VARIABLES Subcommand

VARIABLES specifies the series to be plotted and is the only required subcommand.
B The minimum VARIABLES specification is a pair of series names.
m Ifyou do not use the keyword WITH, each series is paired with every other series in the list.

B If you specify the keyword WITH, every series named before WITH is paired with every
series named after WITH.

Example

CCF VARIABLES=VARA VARB WITH VARC VARD.

m This example displays and plots the cross-correlation functions for the following pairs of
series: VARA with VARC, VARA with VARD, VARB with VARC, and VARB with VARD.

B VARA is not paired with VARB, and VARC is not paired with VARD.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary series to a stationary
one with a constant mean and variance before obtaining cross-correlations.

B You can specify 0 or any positive integer on DIFF.
m [f DIFF is specified without a value, the default is 1.

B The number of values used in the calculations decreases by 1 for each degree of differencing.

Example

CCF VARIABLES = VARX VARY
/DIFF=1.

® This command differences series VARX and VARY before calculating and plotting the
cross-correlation function.

SDIFF Subcommand

If the series exhibits seasonal or periodic patterns, you can use SDIFF to seasonally difference
the series before obtaining cross-correlations.

B The specification on SDIFF indicates the degree of seasonal differencing and can be 0 or
any positive integer.

If sDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

The number of seasons used in the calculations decreases by 1 for each degree of seasonal
differencing.

® The length of the period used by SDIFF is specified on the PERTIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERTIOD subcommand).

232

CCF

Example

CCF VARIABLES = VARO1 WITH VARO2 VARO3
/SDIFF=1.

m In this example, one degree of seasonal differencing using the periodicity established on the
TSET or DATE command is applied to the three series.

m Two cross-correlation functions are then plotted, one for the pair VAROI and VAR02, and
one for the pair VAROI and VARO3.

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF or SEASONAL subcommands.

m The specification on PERIOD indicates how many observations are in one period or season
and can be any positive integer greater than 1.

PERIOD is ignored if it is used without the SDIFF or SEASONAL subcommands.

If PERTIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.

If periodicity was not established anywhere, the SDIFF and SEASONAL subcommands will
not be executed.

Example

CCF VARIABLES = VARX WITH VARY
/SDIFF=1
/PERIOD=6.

m This command applies one degree of seasonal differencing with a periodicity of 6 to both
series and computes and plots the cross-correlation function.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of each series and is used to remove

varying amplitude over time. NOLOG indicates that the data should not be log transformed.
NOLOG is the default.

m There are no additional specifications on LN or NOLOG.

® Only the last LN or NOLOG subcommand on a CCF command is executed.
B LN and NOLOG apply to all series named on the CCF command.
|

If a natural log transformation is requested and any values in either series in a pair are less
than or equal to 0, the CCF for that pair will not be produced because nonpositive values
cannot be log transformed.

B NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example

CCF VARIABLES = VAR(01 VARO2

233
CCF

/LN.

® This command transforms the series VAR0! and VAR(?2 using the natural log before
computing cross-correlations.

SEASONAL Subcommand

Use SEASONAL to focus attention on the seasonal component by displaying and plotting
cross-correlations at periodic lags only.

B There are no additional specifications on SEASONAL.

m [f SEASONAL is specified, values are displayed and plotted at the periodic lags indicated on the
PERTIOD subcommand. If no PERTOD subcommand is specified, the periodicity first defaults
to the TSET PERIOD specification and then to the DATE command periodicity. If periodicity
is not established anywhere, SEASONAL is ignored (see the PERIOD subcommand).

B [f SEASONAL is not used, cross-correlations for all lags up to the maximum are displayed
and plotted.

Example

CCF VARIABLES = VARO1l VAR(02 VARO03
/SEASONAL.

® This command plots and displays cross-correlations at periodic lags.

m By default, the periodicity established on TSET PERIOD (or the DATE command) is used. If
no periodicity is established, cross-correlations for all lags are displayed and plotted.

MXCROSS Subcommand

MXCROSS specifies the maximum range of lags for a series.
B The specification on MXCROSS must be a positive integer.

B [f MXCROSS is not specified, the default range is the value set on TSET MXCROSS. If TSET
MXCROSS is not specified, the default is 7 (lags -7 to +7).

® The value specified on the MXCROSS subcommand overrides the value set on TSET MXCROSS.

Example

CCF VARIABLES = VARX VARY
/MXCROSS=5.

B The maximum number of cross-correlations can range from lag —5 to lag +5.

APPLY Subcommand

APPLY allows you to use a previously defined CCF model without having to repeat the
specifications.

234

CCF

® The only specification on APPLY is the name of a previous model enclosed in apostrophes. If
a model name is not specified, the model specified on the previous CCF command is used.

® To change one or more model specifications, specify the subcommands of only those portions
you want to change after the APPLY subcommand.

m [f no series are specified on the command, the series that were originally specified with
the model being applied are used.

m To change the series used with the model, enter new series names before or after the APPLY
subcommand.

Example

CCF VARIABLES = VARX VARY

/LN
/DIFF=1
/MXCROSS=25.
CCF VARIABLES = VARX VARY
/LN
/DIFF=1
/SDIFF=1
/PERIOD=12
/MXCROSS=25.
CCF VARIABLES = VARX VARO1
/APPLY.
CCF VARIABLES = VARX VARO1
/APPLY="'MOD_1".

B The first command displays and plots the cross-correlation function for VARX and VARY after
each series is log transformed and differenced. The maximum range is set to 25 lags. This
model is assigned the name MOD I as soon as the command is executed.

B The second command displays and plots the cross-correlation function for VARX and VARY
after each series is log transformed, differenced, and seasonally differenced with a periodicity
of 12. The maximum range is again set to 25 lags. This model is assigned the name MOD 2.

B The third command requests the cross-correlation function for the series VARX and VARO1
using the same model and the same range of lags as used for MOD 2.

® The fourth command applies MOD I (from the first command) to the series VARX and VARO].

References

Box, G. E. P,, and G. M. Jenkins. 1976. Time series analysis: Forecasting and control, Rev. ed.
San Francisco: Holden-Day.

cD

CD 'directory specification'.

This command takes effect immediately. It does not read the active dataset or execute pending
transformations. For more information, see Command Order on p. 21.

Example

CD 'c:\main\sales\consumer_division\2004\data'.
GET FILE='julydata.sav'.
INSERT FILE='..\commands\monthly_ report.sps'.

Overview

CD changes the working directory location, making it possible to use relative paths for subsequent
file specifications in command syntax, including data files specified on commands such as GET
and SAVE, command syntax files specified on commands such as INSERT and INCLUDE, and
output files specified on commands such as OMS and WRITE.

Basic Specification

The only specification is the command name followed by a quoted directory specification.
m The directory specification can contain a drive specification.

m The directory specification can be a previously defined file handle (see the FILE HANDLE
command for more information).

m The directory specification can include paths defined in operating system environment
variables.

Operations

The change in the working directory remains in effect until some other condition occurs that
changes the working directory during the session, such as explicitly changing the working
directory on another CD command or an INSERT command with a CD keyword that specifies
a different directory.

m [f the directory path is a relative path, it is relative to the current working directory.
m [f the directory specification contains a filename, the filename portion is ignored.

m [f the last (most-nested) subdirectory in the directory specification does not exist, then it is
assumed to be a filename and is ignored.

m [f any directory specification prior to the last directory (or file) is invalid, the command will
fail, and an error message is issued.

235

236

cD
Limitations
The ¢cD command has no effect on the relative directory location for SET command file
specifications, including JOURNAL , CTEMPLATE, and TLOOK. File specifications on the SET
command should include complete path information.

Examples

Working with Absolute Paths

CD 'c:\sales\data\july.sav'.
CD 'c:\sales\data\july'.
CD 'c:\sales\dgta\july'.
If c:\sales\data is a valid directory:

m The first cD command will ignore the filename july.sav and set the working directory to
c:\sales\data.

m [f the subdirectory july exists, the second cD command will change the working directory to
c:\sales\data\july; otherwise, it will change the working directory to c:\sales\data.

B The third ¢D command will fail if the dgta subdirectory doesn’t exist.

Working with Relative Paths

CD 'c:\sales'.

CD 'data'.

CD 'july'.

If c:\sales is a valid directory:

m The first CD command will change the working directory to c:\sales.

B The relative path in the second CD command will change the working directory to
c:\sales\data.

m The relative path in the third D command will change the working directory to
c:\sales\data\july.

Preserving and Restoring the Working Directory Setting

The original working directory can be preserved with the PRESERVE command and later restored
with the RESTORE command.

Example

CD 'c:\sales\data'.
PRESERVE.

CD 'c:\commands\examples'.
RESTORE.

B PRESERVE retains the working directory location set on the preceding CD command.

237

B The second cD command changes the working directory.

B RESTORE resets the working directory back to c:\sales\data.

cD

CLEAR TRANSFORMATIONS

CLEAR TRANSFORMATIONS

This command takes effect immediately. It does not read the active dataset or execute pending
transformations. For more information, see Command Order on p. 21.

Overview
CLEAR TRANSFORMATIONS discards previous data transformation commands.
Basic Specification

The only specification is the command itself. CLEAR TRANSFORMATIONS has no additional
specifications.

Operations

B CLEAR TRANSFORMATIONS discards all data transformation commands that have
accumulated since the last procedure.

B CLEAR TRANSFORMATIONS has no effect if a command file is submitted to your operating
system for execution. It generates a warning when a command file is present.

m Be sure to delete CLEAR TRANSFORMATIONS and any unwanted transformation commands
from the journal file if you plan to submit the file to the operating system for batch mode
execution. Otherwise, the unwanted transformations will cause problems.

Examples

GET FILE="c:\data\query.sav".

FREQUENCIES=ITEM1 ITEM2 ITEM3.

RECODE ITEM1, ITEM2, ITEM3 (0=1) (1=0) (2=-1).
COMPUTE INDEXQ=(ITEM1 + ITEM2 + ITEM3) /3.

VARIABLE LABELS INDEXQ 'SUMMARY INDEX OF QUESTIONS'.
CLEAR TRANSFORMATIONS.

DISPLAY DICTIONARY.

The GET and FREQUENCIES commands are executed.

The RECODE, COMPUTE, and VARIABLE LABELS commands are transformations. They do
not affect the data until the next procedure is executed.

®m The CLEAR TRANSFORMATIONS command discards the RECODE, COMPUTE, and VARIABLE
LABELS commands.

® The DISPLAY command displays the working file dictionary. Data values and labels are
exactly as they were when the FREQUENCIES command was executed. The variable INDEXQ
does not exist because CLEAR TRANSFORMATIONS discarded the COMPUTE command.

238

CLUSTER

CLUSTER varlist [/MISSING=[EXCLUDE**] [INCLUDE]]

[/MEASURE= [{ SEUCLID* *
{EUCLID
{COSINE
{CORRELATION
{BLOCK
{CHEBYCHEV
{POWER (p, r)
{MINKOWSKI (p)
{CHISQ
{PH2
{RR[(p[,m
{sM[(p[,
{JACCARD

{SIZE[(p
{PATTERN
{BSEUCLI
{BSHAPE [
{DISPER|
{VARIANC
{BLWMN [(

[/METHOD={BAVERAGE**} [(rootname)] [...]]
{WAVERAGE }
{SINGLE }
{COMPLETE }
{CENTROID }
{MEDIAN }
{WARD }
{DEFAULT** }

[/SAVE=CLUSTER ({level })] [/ID=varname]
{min, max}

[/PRINT=[CLUSTER ({level })]1 [DISTANCE] [SCHEDULE**] [NONE]]
{min, max}

[/PLOT=[VICICLE** [(min[,max[,inc

11)1]1 [DENDROGRAM] [NONE]]
[HICICLE[(min[,max[,inc]])1]

[/MATRIX=[IN({'savfile'|'dataset'})] [OUT({'savfile'|'dataset'})]]
{* } {* }

** Default if the subcommand or keyword is omitted.

239

240

CLUSTER

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

CLUSTER V1 TO V4
/PLOT=DENDROGRAM
/PRINT=CLUSTER (2,4).

Overview

CLUSTER produces hierarchical clusters of items based on distance measures of dissimilarity or
similarity. The items being clustered are usually cases from the active dataset, and the distance
measures are computed from their values for one or more variables. You can also cluster variables

if you read in a matrix measuring distances between variables. Cluster analysis is discussed
in Anderberg (1973).

Options

Cluster Measures and Methods. You can specify one of 37 similarity or distance measures on the
MEASURE subcommand and any of the seven methods on the METHOD subcommand.

New Variables. You can save cluster membership for specified solutions as new variables in the
active dataset using the SAVE subcommand.

Display and Plots. You can display cluster membership, the distance or similarity matrix used
to cluster variables or cases, and the agglomeration schedule for the cluster solution with the
PRINT subcommand. You can request either a horizontal or vertical icicle plot or a dendrogram
of the cluster solution and control the cluster levels displayed in the icicle plot with the PLOT
subcommand. You can also specify a variable to be used as a case identifier in the display on
the ID subcommand.

Matrix Input and Output. You can write out the distance matrix and use it in subsequent CLUSTER,
PROXIMITIES, or ALSCAL analyses or read in matrices produced by other CLUSTER or
PROXIMITIES procedures using the MATRIX subcommand.

Basic Specification

The basic specification is a variable list. CLUSTER assumes that the items being clustered are
cases and uses the squared Euclidean distances between cases on the variables in the analysis
as the measure of distance.

Subcommand Order
m The variable list must be specified first.

® The remaining subcommands can be specified in any order.

241
CLUSTER

Syntax Rules
m The variable list and subcommands can each be specified once.

® More than one clustering method can be specified on the METHOD subcommand.

Operations

The CLUSTER procedure involves four steps:

m First, CLUSTER obtains distance measures of similarities between or distances separating
initial clusters (individual cases or individual variables if the input is a matrix measuring
distances between variables).

B Second, it combines the two nearest clusters to form a new cluster.
m Third, it recomputes similarities or distances of existing clusters to the new cluster.

m [t then returns to the second step until all items are combined in one cluster.

This process yields a hierarchy of cluster solutions, ranging from one overall cluster to as
many clusters as there are items being clustered. Clusters at a higher level can contain several
lower-level clusters. Within each level, the clusters are disjoint (each item belongs to only one
cluster).

B CLUSTER identifies clusters in solutions by sequential integers (1, 2, 3, and so on).

Limitations

B CLUSTER stores cases and a lower-triangular matrix of proximities in memory. Storage
requirements increase rapidly with the number of cases. You should be able to cluster 100
cases using a small number of variables in an 80K workspace.

B CLUSTER does not honor weights.

Example

CLUSTER V1 TO V4
/ PLOT=DENDROGRAM
/PRINT=CLUSTER (2 4).

m This example clusters cases based on their values for all variables between and including
V1 and V4 in the active dataset.

m The analysis uses the default measure of distance (squared Euclidean) and the default
clustering method (average linkage between groups).

B PLOT requests a dendrogram.

B PRINT displays a table of the cluster membership of each case for the two-, three-, and
four-cluster solutions.

Variable List

The variable list identifies the variables used to compute similarities or distances between cases.

242

CLUSTER

m The variable list is required except when matrix input is used. It must be specified before
the optional subcommands.

®m [f matrix input is used, the variable list can be omitted. The names for the items in the matrix
are used to compute similarities or distances.

B You can specify a variable list to override the names for the items in the matrix. This allows
you to read in a subset of cases for analysis. Specifying a variable that does not exist in the
matrix results in an error.

MEASURE Subcommand

MEASURE specifies the distance or similarity measure used to cluster cases.

m [f the MEASURE subcommand is omitted or included without specifications, squared Euclidean
distances are used.

® Only one measure can be specified.

Measures for Interval Data

For interval data, use any one of the following keywords on MEASURE:

SEUCLID Squared Euclidean distance. The distance between two items, x and y,
is the sum of the squared differences between the values for the items.
SEUCLID is the measure commonly used with centroid, median, and
Ward’s methods of clustering. SEUCLID is the default and can also be
requested with keyword DEFAULT.

SEUCLID(x,y) = i(x; —y3)*

EUCLID Euclidean distance. This is the default specification for MEASURE. The
distance between two items, x and y, is the square root of the sum of the
squared differences between the values for the items.

EUCLID(z,y) =

Si(x; — i)’

CORRELATION Correlation between vectors of values. This is a pattern similarity
measure.
CORRELATION (i, y) = ~Zi%vi)

where Zy; is the z score (standardized) value of x for the ith case or
variable, and N is the number of cases or variables.

COSINE Cosine of vectors of values. This is a pattern similarity measure.

COSINE(z,y) = ——ilivd

CHEBYCHEV Chebychev distance metric. The distance between two items is the
maximum absolute difference between the values for the items.

CHEBYCHEV (x,y) = max;|x; — yi|

BLOCK City-block or Manhattan distance. The distance between two items is the
sum of the absolute differences between the values for the items.
BLOCK (z,y) = Xi|z: — il

243

MINKOWSKI(p)

POWER(p,r)

CLUSTER

Distance in an absolute Minkowski power metric. The distance between
two items is the pth root of the sum of the absolute differences to the pth
power between the values for the items. Appropriate selection of the
integer parameter p yields Euclidean and many other distance metrics.

MINKOWSKI(z,y) = (Si|z: — yi|)Y?

Distance in an absolute power metric. The distance between two items
is the rth root of the sum of the absolute differences to the pth power
between the values for the items. Appropriate selection of the integer
parameters p and r yields Euclidean, squared Euclidean, Minkowski,
city-block, and many other distance metrics.

POWER(x.y) = (Sila, — y:|")"/"

Measures for Frequency Count Data

For frequency count data, use any one of the following keywords on MEASURE:

CHISQ

PH2

Based on the chi-square test of equality for two sets of frequencies. The magnitude
of this dissimilarity measure depends on the total frequencies of the two cases or
variables whose dissimilarity is computed. Expected values are from the model of
independence of cases or variables x and y.

1 Cy = Eale—E()? iy —By))?
CHISQ(z.y) = \/ Fi(ri) + uF—’(!li)U
Phi-square between sets of frequencies. This is the CHISQ measure normalized by the
square root of the combined frequency. Therefore, its value does not depend on the
total frequencies of the two cases or variables whose dissimilarity is computed.

B2 N2 B —8(y))?
Gt EG)

PH2(x,y) = \/ £

Measures for Binary Data

Different binary measures emphasize different aspects of the relationship between sets of binary
values. However, all the measures are specified in the same way. Each measure has two optional
integer-valued parameters, p (present) and np (not present).

m [f both parameters are specified, CLUSTER uses the value of the first as an indicator that a
characteristic is present and the value of the second as an indicator that a characteristic
is absent. CLUSTER skips all other values.

m [f only the first parameter is specified, CLUSTER uses that value to indicate presence and all
other values to indicate absence.

B [f no parameters are specified, CLUSTER assumes that 1 indicates presence and 0 indicates

absence.

244
CLUSTER

Using the indicators for presence and absence within each item (case or variable), CLUSTER
constructs a 2 x 2 contingency table for each pair of items in turn. It uses this table to compute a
proximity measure for the pair.

Item 2 characteristics

Present Absent
Item 1 characteristics
Present a b
Absent ¢

CLUSTER computes all binary measures from the values of a, b, ¢, and d. These values are tallied
across variables (when the items are cases) or across cases (when the items are variables). For
example, if the variables V, W, X, Y, Z have values 0, 1, 1, 0, 1 for case 1 and values 0, 1, 1, 0, O for
case 2 (where 1 indicates presence and 0 indicates absence), the contingency table is as follows:

Case 2 characteristics

Present Absent
Case 1 characteristics
Present 2 1
Absent 0 2

The contingency table indicates that both cases are present for two variables (W and X), both cases
are absent for two variables (V and Y), and case 1 is present and case 2 is absent for one variable
(Z). There are no variables for which case 1 is absent and case 2 is present.

The available binary measures include matching coefficients, conditional probabilities,
predictability measures, and others.

Matching Coefficients. The table below shows a classification scheme for matching coefficients.
In this scheme, matches are joint presences (value a in the contingency table) or joint absences
(value d). Nonmatches are equal in number to value b plus value c. Matches and nonmatches
may or may not be weighted equally. The three coefficients JACCARD, DICE, and SS2 are related
monotonically, as are SM, SS1, and RT. All coefficients in the table are similarity measures,

and all except two (k1 and SS3) range from 0 to 1. K1 and SS3 have a minimum value of 0

and no upper limit.

Table 27-1
Binary matching coefficients in CLUSTER

Joint absences | Joint absences
excluded from included in
numerator numerator

All matches included in denominator

Equal weight for matches |RR SM
and nonmatches

245

All matches included in denominator

Double weight for matches

Double weight for
nonmatches

Joint absences excluded from denominator

Equal weight for matches
and nonmatches

Double weight for
matches

Double weight for
nonmatches

All matches excluded from denominator

Equal weight for matches
and nonmatches

CLUSTER

Joint absences | Joint absences
excluded from |included in
numerator numerator

SS1

RT
JACCARD
DICE

SS3

RR[(p[,npD]

SM{[(p[,np])]

JACCARDI(p[,np])]

DICE[(p[,npD]

SS1{(p[,npD]

RT[(p[,npD]

SS2[(p[,npD]

Russell and Rao similarity measure. This is the binary dot product.

RR(z.y) = sfega

Simple matching similarity measure. This is the ratio of the number of
matches to the total number of characteristics.

i d
SM(x.y) = 55ty

Jaccard similarity measure. This is also known as the similarity ratio.

J.“LCCII.RD(I y) - (Jm

Dice (or Czekanowski or Sorenson) similarity measure.

DICE(x,y) = Tf_(,i_i_c

Sokal and Sneath similarity measure 1.

2(a+d
SSUw.y) = iy tidera

Rogers and Tanimoto similarity measure.

P _ atd
BT(e.y) = s

Sokal and Sneath similarity measure 2.

552(x.y) = cratvrsy

246

CLUSTER

K1[(p[,np))]

SS3[(p[;npD)]

Kulczynski similarity measure 1. This measure has a minimum value
of 0 and no upper limit. It is undefined when there are no nonmatches
(b=0 and c=0).

Kl(e,y) =
Sokal and Sneath similarity measure 3. This measure has a minimum

value of 0 and no upper limit. It is undefined when there are no
nonmatches (b=0 and ¢=0).

S553(x,y) = ‘Zi;l

Conditional Probabilities. The following binary measures yield values that can be interpreted in
terms of conditional probability. All three are similarity measures.

K2[(p[,np])]

SS4[(p[,npD]

HAMANN](p[,np])]

Kulczynski similarity measure 2. This yields the average conditional
probability that a characteristic is present in one item given that the
characteristic is present in the other item. The measure is an average over
both items acting as predictors. It has a range of 0 to 1.

1(2(1“/ Y) — a/(a+b)~2|»a/(a+c)

Sokal and Sneath similarity measure 4. This yields the conditional
probability that a characteristic of one item is in the same state (presence
or absence) as the characteristic of the other item. The measure is an

average over both items acting as predictors. It has a range of 0 to 1.

554(1)"’ y) — a/(a+b)+a/(a+c)«i»nl/(l1+n1)+(l/(c+rl)

Hamann similarity measure. This measure gives the probability that a
characteristic has the same state in both items (present in both or absent
from both) minus the probability that a characteristic has different states
in the two items (present in one and absent from the other). HAMANN has
arange of —1 to +1 and is monotonically related to SM, SS1, and RT.

AAT AN AN 0 — (atd)—(b+0)
HAMANN(z.y) = 507

Predictability Measures. The following four binary measures assess the association between items
as the predictability of one given the other. All four measures yield similarities.

LAMBDA[(p[,np])]

Goodman and Kruskal's lambda (similarity). This coefficient assesses
the predictability of the state of a characteristic on one item (present or
absent) given the state on the other item. Specifically, LAMBDA measures
the proportional reduction in error using one item to predict the other
when the directions of prediction are of equal importance. LAMBDA has a
range of 0 to 1.

where

t1 = max(a, b) + max(c,d) + max(a, ¢) + max(b,d)

247

D[(p[,np]]

Y[(p[,np)]

Ql(p[,npD]

CLUSTER

ty =max(a + ¢, b+ d) + max(a + d, ¢ + d).

Anderberg s D (similarity). This coefficient assesses the predictability
of the state of a characteristic on one item (present or absent) given the
state on the other. D measures the actual reduction in the error probability
when one item is used to predict the other. The range of Dis 0 to 1.

T — t; —
D(x.y) = st s

where
t1 = max(a, b) + max(c,d) + max(a, c¢) + max(b,d)

tp =max(a + ¢, b+ d)+ max(a + d, ¢ + d).

Yule’s Y coefficient of colligation (similarity). This is a function
of the cross-ratio for a 2 x 2 table. It has a range of —1 to +1.

Yiey) = 27

Yule's Q (similarity). This is the 2 x 2version of Goodman and Kruskal’s
ordinal measure gamma. Like Yule’s Y, Q is a function of the cross-ratio
for a 2 x 2 table and has a range of —1 to +1.

ad—bc
Q(;U' y) = ad+be

Other Binary Measures. The remaining binary measures available in CLUSTER are either binary
equivalents of association measures for continuous variables or measures of special properties
of the relationship between items.

OCHIAI[(p[,np))]

SSS[(p[,npD]

PHI[(p[,np])]

BEUCLID|(p[,np])]

BSEUCLID|[(p[,npD)]

Ochiai similarity measure. This is the binary form of the cosine. It has a
range of 0 to 1.

OCHIAI(z.y) = [2

Sokal and Sneath similarity measure 5. The range is 0 to 1.

5‘5,' - — ad
S(z.y) V/(a+b)(a+c) (b+d)(c+d)

Fourfold point correlation (similarity). This is the binary form of the
Pearson product-moment correlation coefficient.

PHI(z,y) = ad—be
(z,9) (ath) (ate) (brd) (et d)

Binary Euclidean distance. This is a distance measure. Its minimum
value is 0, and it has no upper limit.

BEUCLID(z,y) =+vVb+ ¢

Binary squared Euclidean distance. This is a distance measure. Its
minimum value is 0, and it has no upper limit.

BSEUCLID(x,y)=b+c¢

248

CLUSTER

SIZE[(p[,npD] Size difference. This is a dissimilarity measure with a minimum value of
0 and no upper limit.

, b)2
SIZE(z,y) = m

PATTERN][(p[,np])] Pattern difference. This is a dissimilarity measure. The range is 0 to 1.

PATTERN (2.y9) = s

BSHAPE|[(p[,np])] Binary shape difference. This dissimilarity measure has no upper or
lower limit.

BSHAPE(x,y) = (atbtetd)(b4c)—(b—c)?

(a+l7+c+r]:)2
DISPER|(p[,np])] Dispersion similarity measure. The range is —1 to +1.
P _ ad—he
DISPER(z.y) = (bt eid?
VARIANCE|[(p[,np])] Variance dissimilarity measure. This measure has a minimum value of 0

and no upper limit.

VARIANCE(z.y) = qopmeray
BLWMN]|(p[,np])] Binary Lance-and-Williams nonmetric dissimilarity measure. This

measure is also known as the Bray-Curtis nonmetric coefficient. The
range is 0 to 1.

BIWMN (x.y) = 5255

METHOD Subcommand

METHOD specifies one or more clustering methods.

m [f the METHOD subcommand is omitted or included without specifications, the method of
average linkage between groups is used.

B Only one METHOD subcommand can be used, but more than one method can be specified on it.

B When the number of items is large, CENTROID and MEDIAN require significantly more CPU
time than other methods.

BAVERAGE Average linkage between groups (UPGMA). BAVERAGE is the default and
can also be requested with keyword DEFAULT.

WAVERAGE Average linkage within groups.

SINGLE Single linkage or nearest neighbor.

COMPLETE Complete linkage or furthest neighbor.

CENTROID Centroid clustering (UPGMC). Squared Euclidean distances are
commonly used with this method.

MEDIAN Median clustering (WPGMC). Squared Euclidean distances are

commonly used with this method.

WARD Ward's method. Squared Euclidean distances are commonly used with
this method.

249

CLUSTER

Example

CLUSTER V1 V2 V3

/METHOD=SINGLE COMPLETE WARDS.

This example clusters cases based on their values for the variables V1, V2, and V'3 and uses
three clustering methods: single linkage, complete linkage, and Ward’s method.

SAVE Subcommand

SAVE allows you to save cluster membership at specified solution levels as new variables in the
active dataset.

The specification on SAVE is the CLUSTER keyword, followed by either a single number
indicating the level (number of clusters) of the cluster solution or a range separated by a
comma indicating the minimum and maximum numbers of clusters when membership of
more than one solution is to be saved. The number or range must be enclosed in parentheses
and applies to all methods specified on METHOD.

You can specify a rootname in parentheses after each method specification on the METHOD
subcommand. CLUSTER forms new variable names by appending the number of the cluster
solution to the rootname.

If no rootname is specified, CLUSTER forms variable names using the formula CLUn_m,
where m increments to create a unique rootname for the set of variables saved for one method
and # is the number of the cluster solution.

The names and descriptive labels of the new variables are displayed in the procedure
information notes.

You cannot use the SAVE subcommand if you are replacing the active dataset with matrix
materials (For more information, see Matrix Output on p. 252.)

Example

CLUSTER A B C
/METHOD=BAVERAGE SINGLE (SINMEM) WARD
/SAVE=CLUSTERS (3,5) .

This command creates nine new variables: CLUS 1, CLU4_1, and CLU3_1 for BAVERAGE,
SINMEMS, SINMEMA4, and SINMEM3 for SINGLE, and CLU5 2, CLU4_2, and CLU3 2
for WwARD. The variables contain the cluster membership for each case at the five-, four-,
and three-cluster solutions using the three clustering methods. Ward’s method is the third
specification on METHOD but uses the second set of default names, since it is the second
method specified without a rootname.

The order of the new variables in the active dataset is the same as listed above, since the
solutions are obtained in the order from 5 to 3.

® New variables are listed in the procedure information notes.

250

CLUSTER

ID Subcommand

ID names a string variable to be used as the case identifier in cluster membership tables, icicle
plots, and dendrograms. If the ID subcommand is omitted, cases are identified by case numbers

alone.

B When used with the MATRIX IN subcommand, the variable specified on the 1D subcommand
identifies the labeling variable in the matrix file.

PRINT Subcommand

PRINT controls the display of cluster output (except plots, which are controlled by the PLOT

subcommand).

m [f the PRINT subcommand is omitted or included without specifications, an agglomeration
schedule is displayed. If any keywords are specified on PRINT, the agglomeration schedule is
displayed only if explicitly requested.

B CLUSTER automatically displays summary information (the method and measure used, the
number of cases) for each method named on the METHOD subcommand. This summary is
displayed regardless of specifications on PRINT.

You can specify any or all of the following on the PRINT subcommand:

SCHEDULE

CLUSTER(min,max)

DISTANCE

NONE

Example

Agglomeration schedule. The agglomeration schedule shows the order
and distances at which items and clusters combine to form new clusters.
It also shows the cluster level at which an item joins a cluster. SCHEDULE
is the default and can also be requested with the keyword DEFAULT.

Cluster membership. For each item, the display includes the value of the
case identifier (or the variable name if matrix input is used), the case
sequence number, and a value (1, 2, 3, and so on) identifying the cluster
to which that case belongs in a given cluster solution. Specify either

a single integer value in parentheses indicating the level of a single
solution or a minimum value and a maximum value indicating a range of
solutions for which display is desired. If the number of clusters specified
exceeds the number produced, the largest number of clusters is used (the
number of items minus 1). If CLUSTER is specified more than once, the
last specification is used.

Proximities matrix. The proximities matrix table displays the distances
or similarities between items computed by CLUSTER or obtained from
an input matrix. DISTANCE produces a large volume of output and uses
significant CPU time when the number of cases is large.

None of the above. NONE overrides any other keywords specified on
PRINT.

CLUSTER V1 V2 V3 /PRINT=CLUSTER(3,5).

m This example displays cluster membership for each case for the three-, four-, and five-cluster

solutions.

251

PLOT Subcommand

CLUSTER

PLOT controls the plots produced for each method specified on the METHOD subcommand. For
icicle plots, PLOT allows you to control the cluster solution at which the plot begins and ends
and the increment for displaying intermediate cluster solutions.

m [f the PLOT subcommand is omitted or included without specifications, a vertical icicle

plot is produced.

m [f any keywords are specified on PLOT, only those plots requested are produced.

m The icicle plots are generated as pivot tables and the dendrogram is generated as text output.

m If there is not enough memory for a dendrogram or an icicle plot, the plot is skipped and

a warning is issued.

m The size of an icicle plot can be controlled by specifying range values or an increment for
VICICLE or HICICLE. Smaller plots require significantly less workspace and time.

VICICLE(min,max,inc)

HICICLE (min,max,inc)

DENDROGRAM

NONE

Example

Vertical icicle plot. This is the default. The range specifications

are optional. If used, they must be integer and must be enclosed in
parentheses. The specification min is the cluster solution at which to start
the display (the default is 1), and the specification max is the cluster
solution at which to end the display (the default is the number of cases
minus 1). If max is greater than the number of cases minus 1, the default
is used. The increment to use between cluster solutions is inc (the default
is 1). If max is specified, min must be specified, and if inc is specified,
both min and max must be specified. If VICICLE is specified more than
once, only the last range specification is used.

Horizontal icicle plot. The range specifications are the same as for
VICICLE. If both VICICLE and HICICLE are specified, the last range
specified is used for both. If a range is not specified on the last instance of
VICICLE or HICICLE, the defaults are used even if a range is specified
earlier.

Tree diagram. The dendrogram is scaled by the joining distances of the
clusters.

No plots.

CLUSTER V1 V2 V3 /PLOT=VICICLE(1l,20).

m This example produces a vertical icicle plot for the 1-cluster through the 20-cluster solution.

Example

CLUSTER V1 V2 V3 /PLOT=VICICLE(1,151,5).

m This example produces a vertical icicle plot for every fifth cluster solution starting with 1 and
ending with 151 (1 cluster, 6 clusters, 11 clusters, and so on).

252
CLUSTER

MISSING Subcommand

MISSING controls the treatment of cases with missing values. A case that has a missing value for

any variable on the variable list is omitted from the analysis. By default, user-missing values are
excluded from the analysis.

EXCLUDE Exclude cases with user-missing values. This is the default.

INCLUDE Include cases with user-missing values. Only cases with system-missing
values are excluded.

MATRIX Subcommand

MATRIX reads and writes SPSS-format matrix data files.

m Either IN or OoUT and a matrix file in parentheses are required. When both IN and ouT

are used on the same CLUSTER procedure, they can be specified on separate MATRIX
subcommands or on the same subcommand.

® The input or output matrix information is displayed in the procedure information notes.

OUT (‘savfile’|’dataset’) Write a matrix data file. Specify either a quoted file specification,
a previously declared dataset (DATASET DECLARE), Or an
asterisk in parentheses (*). If you specify an asterisk (*), the
matrix data file replaces the active dataset.

IN (‘savfile’|’dataset’) Read a matrix data file. Specify either a quoted file specification,
a previously declared dataset (DATASET DECLARE), Or an
asterisk in parentheses (*). The asterisk specifies the active
dataset. A matrix file read from an external file does not replace
the active dataset.

When an SPSS matrix is produced using the MATRIX OUT subcommand, it corresponds to a
unique dataset. All subsequent analyses performed on this matrix would match the corresponding
analysis on the original data. However, if the data file is altered in any way, this would no
longer be true.

For example, if the original file is edited or rearranged, it would in general no longer
correspond to the initially produced matrix. You need to make sure that the data match the matrix
whenever inferring the results from the matrix analysis. Specifically, when saving the cluster

membership into an active dataset in the CLUSTER procedure, the proximity matrix in the MATRIX
TN statement must match the current active dataset.

Matrix Output

B CLUSTER writes proximity-type matrices with ROWTYPE values of PROX. CLUSTER
neither reads nor writes additional statistics with its matrix materials. For more information,
see Format of the Matrix Data File on p. 253.

B The matrices produced by CLUSTER can be used by subsequent CLUSTER procedures or by
the PROXIMITIES and ALSCAL procedures.

B Any documents contained in the active dataset are not transferred to the matrix file.

253

CLUSTER

Matrix Input

CLUSTER can read matrices written by a previous CLUSTER command or by PROXIMITIES,
or created by MATRIX DATA. When the input matrix contains distances between variables,
CLUSTER clusters all or a subset of the variables.

Values for split-file variables should precede values for ROWTYPE . CASENO _and the
labeling variable (if present) should come after ROWTYPE and before VARNAME .

If CASENO _is of type string rather than numeric, it will be considered unavailable and
a warning is issued.

If CASENO _ appears on a variable list, a syntax error results.
CLUSTER ignores unrecognized ROWTYPE values.

When you are reading a matrix created with MATRIX DATA, you should supply a value
label for PROX of either SIMILARITY or DISSIMILARITY so that the matrix is correctly
identified. If you do not supply a label, CLUSTER assumes DISSIMILARITY. (See “Format
of the Matrix Data File” below.)

The program reads variable names, variable and value labels, and print and write formats
from the dictionary of the matrix data file.

MATRIX=TN cannot be specified unless an active dataset has already been defined. To read an
existing matrix data file at the beginning of a session, use GET to retrieve the matrix file and
then specify IN(*) on MATRIX.

The variable list on CLUSTER can be omitted when a matrix data file is used as input. By
default, all cases or variables in the matrix data file are used in the analysis. Specify a variable
list when you want to read in a subset of items for analysis.

Format of the Matrix Data File

The matrix data file can include three special variables created by the program: ROWTYPE
ID, and VARNAME .

The variable ROWTYPE is a string variable with the value PROX (for proximity measure).
PROX is assigned value labels containing the distance measure used to create the matrix and
either SIMILARITY or DISSIMILARITY as an identifier. The variable VARNAME is a short
string variable whose values are the names of the new variables. The variable CASENO _is a
numeric variable with values equal to the original case numbers.

ID is included only when an identifying variable is not specified on the ID subcommand. /D
is a short string and takes the value CASE m, where m is the actual number of each case.
Note that m may not be consecutive if cases have been selected.

If an identifying variable is specified on the ID subcommand, it takes the place of /D between
ROWTYPE and VARNAME . Up to 20 characters can be displayed for the identifying
variable.

VARNAME is a string variable that takes the values VAR1, VAR?2, ..., VAR# to correspond
to the names of the distance variables in the matrix (VARI, VAR2, ..., VARn, where n is
the number of cases in the largest split file). The numeric suffix for the variable names is
consecutive and may not be the same as the actual case number.

254

CLUSTER
® The remaining variables in the matrix file are the distance variables used to form the matrix.
The distance variables are assigned variable labels in the form of CASE m to identify the
actual number of each case.
Split Files

m When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE , the case-identifier variable or /D, VARNAME , and the
distance variables.

A full set of matrix materials is written for each split-file group defined by the split variables.
A split variable cannot have the same name as any other variable written to the matrix data file.

If split-file processing is in effect when a matrix is written, the same split file must be in effect
when that matrix is read by any procedure.

Missing Values

Missing-value treatment affects the values written to a matrix data file. When reading a matrix
data file, be sure to specify a missing-value treatment on CLUSTER that is compatible with the
treatment that was in effect when the matrix materials were generated.

Example: Output to External File

DATA LIST FILE=ALMANAC1l RECORDS=3
/1 CITY 6-18(A) POP80 53-60
/2 CHURCHES 10-13 PARKS 14-17 PHONES 18-25 TVS 26-32
RADIOST 33-35 TVST 36-38 TAXRATE 52-57(2).
N OF CASES 8.

CLUSTER CHURCHES TO TAXRATE
/ID=CITY
/MEASURE=EUCLID
/MATRIX=0UT (CLUSMTX) .

B CLUSTER reads raw data from file ALMANACI and writes one set of matrix materials to
file CLUSMTX.

B The active dataset is still the ALMANACI file defined on DATA LIST. Subsequent commands
are executed on ALMANACI.

Example: Output Replacing Active Dataset

DATA LIST FILE=ALMANAC1l RECORDS=3
/1 CITY 6-18(A) POP80 53-60
/2 CHURCHES 10-13 PARKS 14-17 PHONES 18-25 TVS 26-32
RADIOST 33-35 TVST 36-38 TAXRATE 52-57(2).
N OF CASES 8.

CLUSTER CHURCHES TO TAXRATE
/ID=CITY
/MEASURE=EUCLID
/MATRIX=0UT (*) .

LIST.

255
CLUSTER

B CLUSTER writes the same matrix as in the previous example. However, the matrix data

file replaces the active dataset. The LIST command is executed on the matrix file, not on
ALMANACI.

Example: Input from Active Dataset

GET FILE=CLUSMTX.
CLUSTER
/ID=CITY
/MATRIX=IN(*) .

m This example starts a new session and reads an existing matrix data file. GET retrieves the
matrix data file CLUSMTX.

B MATRIX=IN specifies an asterisk because the matrix data file is the active dataset. If
MATRIX=IN (CLUSMTX) is specified, the program issues an error message.

m [fthe GET command is omitted, the program issues an error message.

Example: Input from External File

GET FILE=PRSNNL.
FREQUENCIES VARIABLE=AGE.

CLUSTER
/ID=CITY
/MATRIX=IN (CLUSMTX) .

m This example performs a frequencies analysis on the file PRSNNL and then uses a different
file for CLUSTER. The file is an existing matrix data file.

® The variable list is omitted on the CLUSTER command. By default, all cases in the matrix file
are used in the analysis.

MATRIX=IN specifies the matrix data file CLUSMTX.
CLUSMTX does not replace PRSNNL as the active dataset.

Example: Input from Active Dataset

GET FILE=CRIME.

PROXIMITIES MURDER TO MOTOR
/VIEW=VARIABLE
/MEASURE=PH2
/MATRIX=0OUT (*) .

CLUSTER
/MATRIX=IN(*) .

B GET retrieves an SPSS-format data file.

B PROXIMITIES uses the data from the CRIME file, which is now the active dataset. The VIEW

subcommand specifies computation of proximity values between variables. The MATRIX
subcommand writes the matrix to the active dataset.

B MATRIX=IN (*) onthe CLUSTER command reads the matrix materials from the active dataset.
Since the matrix contains distances between variables, CLUSTER clusters variables based
on distance measures in the input. The variable list is omitted on the CLUSTER command,

256

CLUSTER

so all variables are used in the analysis. The slash preceding the MATRIX subcommand is
required because there is an implied variable list. Without the slash, CLUSTER would attempt
to interpret MATRIX as a variable name rather than a subcommand name.

COMMENT

{COMMENT} text
()

Overview

COMMENT inserts explanatory text within the command sequence. Comments are included
among the commands printed back in the output; they do not become part of the information
saved in an SPSS-format data file. To include commentary in the dictionary of a data file, use
the DOCUMENT command.

Syntax Rules

m The first line of a comment can begin with the keyword COMMENT or with an asterisk (*).
Comment text can extend for multiple lines and can contain any characters. A period is
required at the end of the last line to terminate the comment.

m Use/* and */ to set off a comment within a command. The comment can be placed wherever a
blank is valid (except within strings) and should be preceded by a blank. Comments within a
command cannot be continued onto the next line.

B The closing */ is optional when the comment is at the end of the line. The command can
continue onto the next line just as if the inserted comment was a blank.

m Comments cannot be inserted within data lines.

Examples

Comment As a Separate Command

* Create a new variable as a combination of two old variables;
the new variable is a scratch variable used later in the
session; it will not be saved with the data file.

COMPUTE #XYVAR=0.
IF (XVAR EQ 1 AND YVAR EQ 1) #XYVAR=1.

B The three-line comment will be included in the display file but will not be part of the data
file if the active dataset is saved.

Comments within Commands
IF (RACE EQ 1 AND SEX EQ 1) SEXRACE = 1. /*White males.

B The comment is entered on a command line. The closing */ is not needed because the
comment is at the end of the line.

257

COMPUTE

COMPUTE target variable=expression

This command does not read the active dataset. It is stored, pending execution with the next
command that reads the dataset. For more information, see Command Order on p. 21.

Example

COMPUTE newvarl=varl+var2.

COMPUTE newvar2=RND (MEAN (varl to var4).

COMPUTE logicalVar=(varl>5).

STRING newString (A10).

COMPUTE newString=CONCAT ((RTRIM(stringVarl), stringVar2).

Functions and operators available for COMPUTE are described in Transformation Expressions
on p. 47.

Overview

COMPUTE creates new numeric variables or modifies the values of existing string or numeric
variables. The variable named on the left of the equals sign is the target variable. The variables,
constants, and functions on the right side of the equals sign form an assignment expression. For
a complete discussion of functions, see Transformation Expressions on p. 47.

Numeric Transformations
Numeric variables can be created or modified with COMPUTE. The assignment expression for

numeric transformations can include combinations of constants, variables, numeric operators,
and functions.

String Transformations
String variables can be modified but cannot be created with COMPUTE. However, a new string
variable can be declared and assigned a width with the STRING command and then assigned

values by COMPUTE. The assignment expression can include string constants, string variables, and
any of the string functions. All other functions are available for numeric transformations only.

Basic Specification

The basic specification is a target variable, an equals sign (required), and an assignment
expression.

258

259

COMPUTE

Syntax Rules

m The target variable must be named first, and the equals sign is required. Only one target

variable is allowed per COMPUTE command.

If the target variable is numeric, the expression must yield a numeric value; if the target
variable is a string, the expression must yield a string value.

Each function must specify at least one argument enclosed in parentheses. If a function
has two or more arguments, the arguments must be separated by commas. For a complete
discussion of functions and their arguments, see Transformation Expressions on p. 47.

You can use the TO keyword to refer to a set of variables where the argument is a list of
variables.

Numeric Variables

Parentheses are used to indicate the order of execution and to set off the arguments to a
function.

Numeric functions use simple or complex expressions as arguments. Expressions must be
enclosed in parentheses.

String Variables

m String values and constants must be enclosed in apostrophes or quotation marks.

B When strings of different lengths are compared using the ANY or RANGE functions, the shorter
string is right-padded with blanks so that its length equals that of the longer string.

Operations

m [f the target variable already exists, its values are replaced.

m [f the target variable does not exist and the assignment expression is numeric, the program
creates a new variable.

|

If the target variable does not exist and the assignment expression is a string, the program

displays an error message and does not execute the command. Use the STRING command to
declare new string variables before using them as target variables.

Numeric Variables

New numeric variables created with COMPUTE are assigned a dictionary format of F8.2 and
are initialized to the system-missing value for each case (unless the LEAVE command is
used). Existing numeric variables transformed with COMPUTE retain their original dictionary
formats. The format of a numeric variable can be changed with the FORMATS command.

All expressions are evaluated in the following order: first functions, then exponentiation, and
then arithmetic operations. The order of operations can be changed with parentheses.

COMPUTE returns the system-missing value when it doesn’t have enough information to
evaluate a function properly. Arithmetic functions that take only one argument cannot be
evaluated if that argument is missing. The date and time functions cannot be evaluated if any

260

COMPUTE

argument is missing. Statistical functions are evaluated if a sufficient number of arguments is
valid. For example, in the command

COMPUTE FACTOR = SCOREl + SCORE2 + SCORE3.

FACTOR is assigned the system-missing value for a case if any of the three score values is
missing. It is assigned a valid value only when all score values are valid. In the command

COMPUTE FACTOR = SUM(SCORE1l TO SCORE3) .

FACTOR is assigned a valid value if at least one score value is valid. It is system-missing
only when all three score values are missing. See Missing Values in Numeric Expressions for
information on how to control the minimum number of non-missing arguments required to
return a non-missing result.

String Variables

String variables can be modified but not created on COMPUTE. However, a new string variable
can be created and assigned a width with the STRING command and then assigned new
values with COMPUTE.

Existing string variables transformed with COMPUTE retain their original dictionary formats.
String variables declared on STRING and transformed with COMPUTE retain the formats
assigned to them on STRING.

The format of string variables cannot be changed with FORMATS. Instead, use STRING to
create a new variable with the desired width and then use COMPUTE to set the values of the
new string equal to the values of the original.

The string returned by a string expression does not have to be the same width as the target
variable. If the target variable is shorter, the result is right-trimmed. If the target variable

is longer, the result is right-padded. The program displays no warning messages when
trimming or padding.

To control the width of strings, use the functions that are available for padding (LPAD, RPAD),
trimming (LTRIM, RTRIM), and selecting a portion of strings (SUBSTR).

To determine whether a character in a string is single-byte or double-byte, use the
MBLEN.BYTE function. Specify the string and, optionally, its beginning byte position. If
the position is not specified, it defaults to 1.

For more information, see String Functions on p. 73.

Examples

A number of examples are provided to illustrate the use of COMPUTE. For a complete list of
available functions and detailed function descriptions, see Transformation Expressions.

Arithmetic Operations

COMPUTE V1=25-V2.
COMPUTE V3=(V2/v4)*100.

DO IF Tenure GT 5.

261

COMPUTE

COMPUTE Raise=Salary*.12.
ELSE IF Tenure GT 1.
COMPUTE Raise=Salary*.1.
ELSE.

COMPUTE Raise=0.

END IF.

m V] is 25 minus V2 for all cases. V3 is V2 expressed as a percentage of V4.

B Raise is 12% of Salary if Tenure is greater than 5. For remaining cases, Raise is 10% of

Salary if Tenure is greater than 1. For all other cases, Raise is 0.

Arithmetic Functions

COMPUTE WtChange=ABS (Weightl-Weight2) .
COMPUTE NewVar=RND((V1/V2)*100).
COMPUTE Income=TRUNC (Income) .

COMPUTE MinSqgrt=SQRT (MIN(V1,V2,V3,V4)).

COMPUTE Test = TRUNC (SQRT(X/Y)) * .5.
COMPUTE Parens = TRUNC (SQRT(X/Y) * .5).

B WtChange is the absolute value of Weightl minus Weight2.

B Newlar is the percentage V1 is of V2, rounded to an integer.

B /ncome is truncated to an integer.

B MinSqrt is the square root of the minimum value of the four variables VI to V4. MIN
determines the minimum value of the four variables, and SQRT computes the square root.

m The last two examples above illustrate the use of parentheses to control the order of execution.
For a case with value 2 for X and Y, Test equals 0.5, since 2 divided by 2 (X/Y) is 1, the square
root of 1 is 1, truncating 1 returns 1, and 1 times 0.5 is 0.5. However, Parens equals 0 for the
same case, since SQRT(X/Y) is 1, 1 times 0.5 is 0.5, and truncating 0.5 returns 0.

Statistical Functions

COMPUTE NewSalary = SUM(Salary,Raise).
COMPUTE MinValue = MIN(V1,V2,V3,V4).

COMPUTE MeanValue = MEAN(V1,V2,V3,V4).
COMPUTE NewMean = MEAN.3(V1,V2,V3,V4).

NewSalary is the sum of Salary plus Raise.
MinValue is the minimum of the values for V7 to V4.

MeanValue is the mean of the values for V' to V4. Since the mean can be computed for one,
two, three, or four values, MeanValue is assigned a valid value as long as any one of the
four variables has a valid value for that case.

In the last example above, the . 3 suffix specifies the minimum number of valid arguments
required. NewMean is the mean of variables V1 to V4 only if at least three of these variables
have valid values. Otherwise, NewMean is system-missing for that case.

Missing-Value Functions

MISSING VALUE V1 V2 V3 (0).

262

COMPUTE

COMPUTE Allvalid=vl + V2 + V3.

COMPUTE UM=VALUE (V1) + VALUE(V2) + VALUE(V3).
COMPUTE SM=SYSMIS (V1) + SYSMIS(V2) + SYSMIS(V3).
COMPUTE M=MISSING(V1l) + MISSING(V2) + MISSING(V3).

The MISSING VALUE command declares the value 0 as missing for V1, V2, and V3.

AllValid is the sum of three variables only for cases with valid values for all three variables.
AllValid is assigned the system-missing value for a case if any variable in the assignment
expression has a system- or user-missing value.

m The VALUE function overrides user-missing value status. Thus, UM is the sum of VI, V2, and
V'3 for each case, including cases with the value 0 (the user-missing value) for any of the
three variables. Cases with the system-missing value for V1, V2, and V'3 are system-missing.

B The sysMIs function on the third COMPUTE returns the value 1 if the variable is
system-missing. Thus, SM ranges from 0 to 3 for each case, depending on whether the
variables V1, V2, and V3 are system-missing for that case.

m The MISSING function on the fourth COMPUTE returns the value 1 if the variable named is
system- or user-missing. Thus, M ranges from 0 to 3 for each case, depending on whether the
variables VI, V2, and V3 are user- or system-missing for that case.

®m Alternatively, you could use the COUNT command to create the variables SM and M.

* Test for listwise deletion of missing values.

DATA LIST /V1 TO V6 1-6.
BEGIN DATA

213 56

123457

123457

9234 6

END DATA.

MISSING VALUES V1 TO V6(6,9).

COMPUTE NotValid=NMISS (V1 TO V6).
FREQUENCIES VAR=NotValid.

B COMPUTE determines the number of missing values for each case. For each case without
missing values, the value of NotValid is 0. For each case with one missing value, the value of
NotValid is 1, and so on. Both system- and user-missing values are counted.

B FREQUENCIES generates a frequency table for NotValid. The table gives a count of how many
cases have all valid values, how many cases have one missing value, how many cases have
two missing values, and so on, for variables V1 to V6. This table can be used to determine
how many cases would be dropped in an analysis that uses listwise deletion of missing
values. For other ways to check listwise deletion, see the examples for the ELSE command
(in the DO IF command) and those for the IF command.

For more information, see Missing Value Functions on p. 87.

String Functions

DATA LIST FREE / FullName (A20).
BEGIN DATA

"Fred Smith"

END DATA.

263
COMPUTE

STRING FirstName LastName LastFirstName (A20).

COMPUTE #spaceLoc=INDEX (FullName, " ").

COMPUTE FirstName=SUBSTR (FullName, 1, (#spaceLoc-1)).

COMPUTE LastName=SUBSTR (FullName, (#spaceLoc+1)).

COMPUTE LastFirstName=CONCAT (RTRIM (LastName), ", ", FirstName).
COMPUTE LastFirstName=REPLACE (LastFirstName, "Fred", "Ted").

® The INDEX function returns a number that represents the location of the first blank space in
the value of the string variable FullName.

m The first SUBSTR function sets FirstName to the portion of FullName prior to the first space
in the value. So, in this example, the value of FirstName is “Fred”.

m The second SUBSTR function sets LastName to the portion of FullName after the first blank
space in the value. So, in this example, the value of LastName is “Smith”.

m The CONCAT function combines the values of LastName and FirstName, with a comma and a
space between the two values. So, in this example, the value of LastFirstName is “Smith,
Fred”. Since all string values are right-padded with blank spaces to the defined width of the
string variable, the RTRIM function is needed to remove all the extra blank spaces from
LastName.

® The REPLACE function changes any instances of the string “Fred” in LastFirstName to “Ted”.
So, in this example, the value of LastFirstName is changed to “Smith, Ted”.

For more information, see String Functions on p. 262.

Scoring Functions (SPSS Server Only)

STRING SPECIES (A20).
COMPUTE SCOREPROB=ApplyModel (CREDITMOD1, 'PROBABILIT') .
COMPUTE SPECIES=StrApplyModel (QUESTMOD1, 'PREDICT') .

m SCOREPROB is the probability that the value predicted from the model specified by
CREDITMODI is correct.

B SPECIES is the predicted result from the model specified by QUESTMOD1 as applied to the
active dataset. The prediction is returned as a string value.

CONJOINT

CONJOINT is available in the Conjoint option.
CONJOINT [PLAN={* 1]

{'savfile'|'dataset'}

[/DATA={* }1]
{'savfile'|'dataset'}

/ {SEQUENCE}=varlist
{RANK }
{SCORE }

[/SUBJECT=variable]

[/FACTORS=varlist['labels'] ([{DISCRETE[{MORE}]}]
{ {LESS} }
{LINEAR[{MORE}] }
{ {LESS} }
{IDEAL }
{ANTIIDEAL }
[values|['labels']])]
varlist...
[/PRINT={ALL** } [SUMMARYONLY]]
{ANALYSIS }
{SIMULATION }
{NONE }

[/UTILITY=file]

[/PLOT={ [SUMMARY] [SUBJECT] [ALL]}]
{ [NONE* *] }

**Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example:

CONJOINT PLAN='C:\DATA\CARPLAN.SAV'
/FACTORS=SPEED (LINEAR MORE) WARRANTY (DISCRETE MORE)
PRICE (LINEAR LESS) SEATS
/SUBJECT=SUBJ /RANK=RANK1l TO RANK15 /UTILITY='UTIL.SAV'.

Overview

CONJOINT analyzes score or rank data from full-concept conjoint studies. A plan file that is
generated by ORTHOPLAN or entered by the user describes the set of full concepts that are scored
or ranked in terms of preference. A variety of continuous and discrete models is available to
estimate utilities for each individual subject and for the group. Simulation estimates for concepts
that are not rated can also be computed.

264

265

CONJOINT
Options

Data Input. You can analyze data recorded as rankings of an ordered set of profiles (or cards) as
the profile numbers arranged in rank order, or as preference scores of an ordered set of profiles.

Model Specification. You can specify how each factor is expected to be related to the scores or
ranks.

Display Output. The output can include the analysis of the experimental data, results of simulation
data, or both.

Wiriting an External File. An SPSS data file containing utility estimates and associated statistics for
each subject can be written for use in further analyses or graphs.

Basic Specification

m The basic specification is CONJOINT, a PLAN or DATA subcommand, and a SEQUENCE, RANK,
or SCORE subcommand to describe the type of data.

B CONJOINT requires two files: a plan file and a data file. If only the PLAN subcommand or the
DATA subcommand—but not both—is specified, CONTJOINT will read the file that is specified
on the PLAN or DATA subcommand and use the active dataset as the other file.

m By default, estimates are computed by using the DISCRETE model for all variables in the plan
file (except those named STATUS and CARD). Output includes Kendall’s tau and Pearson’s
product-moment correlation coefficients measuring the relationship between predicted scores
and actual scores. Significance levels for one-tailed tests are displayed.

Subcommand Order

® Subcommands can appear in any order.

Syntax Rules

B Multiple FACTORS subcommands are all executed. For all other subcommands, only the
last occurrence is executed.

Operations

m Both the plan and data files can be external SPSS data files. In this case, CONJOINT can
be used before an active dataset is defined.

B The variable STATUS in the plan file must equal 0 for experimental profiles, 1 for holdout
profiles, and 2 for simulation profiles. Holdout profiles are judged by the subjects but are
not used when CONJOINT estimates utilities. Instead, these profiles are used as a check
on the validity of the estimated utilities. Simulation profiles are factor-level combinations
that are not rated by the subjects but are estimated by CONJOINT based on the ratings of
the experimental profiles. If there is no STATUS variable, all profiles in the plan file are
assumed to be experimental profiles.

® All variables in the plan file except STATUS and CARD _are used by CONJOINT as factors.

m In addition to the estimates for each individual subject, average estimates for each split-file
group that is identified in the data file are computed. The plan file cannot have a split-file
structure.

266

CONJOINT

m Factors are tested for orthogonality by CONJOINT. If all of the factors are not orthogonal, a
matrix of Cramér’s V statistics is displayed to describe the non-orthogonality.

B When SEQUENCE or RANK data are used, CONJOINT internally reverses the ranking scale so
that the computed coefficients are positive.

m The plan file cannot be sorted or modified in any way after the data are collected, because
the sequence of profiles in the plan file must match the sequence of values in the data file in
a one-to-one correspondence. (CONJOINT uses the order of profiles as they appear in the
plan file, not the value of CARD , to determine profile order.) If RANK or SCORE is the
data-recording method, the first response from the first subject in the data file is the rank or
score of the first profile in the plan file. If SEQUENCE is the data-recording method, the first
response from the first subject in the data file is the profile number (determined by the order
of profiles in the plan file) of the most preferred profile.

Limitations

® Factors must be numeric.

® The plan file cannot contain missing values or case weights. In the active dataset, profiles with
missing values on the SUBJECT variable are grouped together and averaged at the end. If any
preference data (the ranks, scores, or profile numbers) are missing, that subject is skipped.

® Factors must have at least two levels. The maximum number of levels for each factor is 99.

Examples

CONJOINT PLAN='C:\DATA\CARPLAN.SAV'
/FACTORS=SPEED (LINEAR MORE) WARRANTY (DISCRETE MORE)
PRICE (LINEAR LESS) SEATS
/SUBJECT=SUBJ /RANK=RANK1 TO RANK15 /UTILITY='UTIL.SAV'.

® The PLAN subcommand specifies the SPSS data file CARPLAN.SAV as the plan file containing
the full-concept profiles. Because there is no DATA subcommand, the active dataset is
assumed to contain the subjects’ rankings of these profiles.

® The FACTORS subcommand specifies the ways in which the factors are expected to be related
to the rankings. For example, speed is expected to be linearly related to the rankings, so that
cars with higher speeds will receive lower (more-preferred) rankings.

® The SUBJECT subcommand specifies the variable SUBJ in the active dataset as an
identification variable. All consecutive cases with the same value on this variable are
combined to estimate utilities.

m The rRANK subcommand specifies that each data point is a ranking of a specific profile and
identifies the variables in the active dataset that contain these rankings.

B UTILITY writes out an external data file named UTIL.SAV containing the utility estimates
and associated statistics for each subject.

PLAN Subcommand

PLAN identifies the file containing the full-concept profiles.

267
CONJOINT

m pLAN is followed by quoted file specification for an SPSS data file or currently open dataset
containing the plan. An asterisk instead of a file specification indicates the active dataset.

m [f the PLAN subcommand is omitted, the active dataset is assumed by default. However, you
must specify at least one SPSS data file or dataset on a PLAN or DATA subcommand. The
active dataset cannot be specified as both the plan file and data file.

m The plan file is a specially prepared file that is generated by ORTHOPLAN or entered by the
user. The plan file can contain the variables CARD and STATUS , and it must contain the
factors of the conjoint study. The value of CARD _is a profile identification number. The
value of STATUS 1is 0, 1, or 2, depending on whether the profile is an experimental profile
(0), a holdout profile (1), or a simulation profile (2).

m The sequence of the profiles in the plan file must match the sequence of values in the data file.

B Any simulation profiles (STATUS =2) must follow experimental and holdout profiles in the
plan file.

m All variables in the plan file except CARD and STATUS _are used as factors by CONJOINT.

Example

DATA LIST FREE /CARD_ WARRANTY SEATS PRICE SPEED STATUS_.

BEGIN DATA

1 1 4 14000 130 2

2 1 4 14000 100 2

3 3 4 14000 130 2

4 3 4 14000 100 2

END DATA.

ADD FILES FILE='C:\DATA\CARPLAN.SAV'/FILE=*.

CONJOINT PLAN=* /DATA='C:\DATA\CARDATA.SAV'
/FACTORS=PRICE (ANTIIDEAL) SPEED (LINEAR) WARRANTY (DISCRETE MORE)
/SUBJECT=SUBJ /RANK=RANK1l TO RANK15 /PRINT=SIMULATION.

B DATA LIST defines six variables—a CARD_identification variable, four factors, and a
STATUS variable.

m The data between BEGIN DATA and END DATA are four simulation profiles. Each profile
contains a CARD _ identification number and the specific combination of factor levels of
interest.

m The variable STATUS is equal to 2 for all cases (profiles). CONJOINT interprets profiles with
STATUS _equal to 2 as simulation profiles.

® The ADD FILES command joins an old plan file, CARPLAN.SAV, with the active dataset.
Note that the active dataset is indicated last on the ADD FILES command so that the
simulation profiles are appended to the end of CARPLAN.SAV.

B The pPLAN subcommand on CONJOINT defines the new active dataset as the plan file. The
DATA subcommand specifies a data file from a previous CONJOINT analysis.

DATA Subcommand

DATA identifies the file containing the subjects’ preference scores or rankings.

m DATA is followed by a quoted file specification for an SPSS data file or a currently open dataset
containing the data. An asterisk instead of a file specification indicates the active dataset.

268

CONJOINT

m If the DATA subcommand is omitted, the active dataset is assumed by default. However, you
must specify at least one SPSS data file on a DATA or PLAN subcommand. The active dataset
cannot be specified as both the plan file and data file.

® One variable in the data file can be a subject identification variable. All other variables are
the subject responses and are equal in number to the number of experimental and holdout
profiles in the plan file.

B The subject responses can be in the form of ranks assigned to an ordered sequence of profiles,
scores assigned to an ordered sequence of profiles, or profile numbers in preference order
from most liked to least liked.

m Tied ranks or scores are allowed. If tied ranks are present, CONJOINT issues a warning and
then proceeds with the analysis. Data recorded in SEQUENCE format, however, cannot have
ties, because each profile number must be unique.

Example

DATA LIST FREE /SUBJ RANK1 TO RANKI15.
BEGIN DATA

0L 3 7 6 1 2 4 912 1513 14 5 8 10 11
62 7 3 4 9 6151013 511 1 8 4 2 12
03 1213 5 114 811 2 7 6 3 415 9 10
064 3 66 7 4 2 1 912 15 11 14 5 8 10 13
05 9 3 4 7 6101513 512 1 8 4 2 11
50 12 13 8 114 511 6 7 2 3 4 15 10 9
END DATA.

SAVE OUTFILE='C:\DATA\RANKINGS.SAV'.
DATA LIST FREE /CARD_ WARRANTY SEATS PRICE SPEED.
BEGIN DATA

1 1 4 14000 130
2 1 4 14000 100
3 3 4 14000 130
4 3 4 14000 100
55 2 10000 130
6 1 4 10000 070
7 3 4 10000 070
8 5 2 10000 100
9 1 4 07000 130
10 1 4 07000 100
11 5 2 07000 070
12 5 4 07000 070
13 1 4 07000 070
14 5 2 10000 070
15 5 2 14000 130
END DATA.

CONJOINT PLAN=* /DATA='C:\DATA\RANKINGS.SAV'
/FACTORS=PRICE (ANTIIDEAL) SPEED (LINEAR)
WARRANTY (DISCRETE MORE)

/SUBJECT=SUBJ /RANK=RANK1l TO RANKI15.

B The first set of DATA LIST and BEGIN-END DATA commands creates a data file containing
the rankings. This file is saved in the external file RANKINGS.SAV.

B The second set of DATA LIST and BEGIN-END DATA commands defines the plan file as the
active dataset.

® The CONJOINT command uses the active dataset as the plan file and uses RANKINGS.SAV
as the data file.

269

CONJOINT

SEQUENCE, RANK, or SCORE Subcommand

The SEQUENCE, RANK, or SCORE subcommand is specified to indicate the way in which the
preference data were recorded.

SEQUENCE Each data point in the data file is a profile number, starting with the most-preferred

profile and ending with the least-preferred profile. This is how the data are recorded
if the subject is asked to order the deck of profiles from most preferred to least
preferred. The researcher records which profile number was first, which profile
number was second, and so on.

RANK Each data point is a ranking, starting with the ranking of profile 1, then the ranking

of profile 2, and so on. This is how the data are recorded if the subject is asked to
assign a rank to each profile, ranging from 1 to n, where # is the number of profiles.
A lower rank implies greater preference.

SCORE Each data point is a preference score assigned to the profiles, starting with the

score of profile 1, then the score of profile 2, and so on. These types of data might
be generated, for example, by asking subjects to use a Likert scale to assign a score
to each profile or by asking subjects to assign a number from 1 to 100 to show how
much they like the profile. A higher score implies greater preference.

You must specify one, and only one, of these three subcommands.

After each subcommand, the names of the variables containing the preference data (the
profile numbers, ranks, or scores) are listed. There must be as many variable names listed as
there are experimental and holdout profiles in the plan file.

Example

CONJOINT PLAN=* /DATA='DATA.SAV'

/FACTORS=PRICE (ANTIIDEAL) SPEED (LINEAR) WARRANTY (DISCRETE MORE)
/SUBJECT=SUBJ
/RANK=RANK1 TO RANK15.

The RANK subcommand indicates that the data are rankings of an ordered sequence of
profiles. The first data point after SUBJ is variable RANK 1, which is the ranking that is given
by subject 1 to profile 1.

There are 15 profiles in the plan file, so there must be 15 variables listed on the RANK
subcommand.

The example uses the TO keyword to refer to the 15 rank variables.

SUBJECT Subcommand

SUBJECT specifies an identification variable. All consecutive cases having the same value on this
variable are combined to estimate the utilities.

If SUBJECT is not specified, all data are assumed to come from one subject, and only a
group summary is displayed.

SUBJECT is followed by the name of a variable in the active dataset.

If the same SUBJECT value appears later in the data file, it is treated as a different subject.

270

CONJOINT

FACTORS Subcommand

FACTORS specifies the way in which each factor is expected to be related to the rankings or scores.

If FACTORS is not specified, the DISCRETE model is assumed for all factors.

All variables in the plan file except CARD _and STATUS _are used as factors, even if they are
not specified on FACTORS.

FACTORS is followed by a variable list and a model specification in parentheses that describes
the expected relationship between scores or ranks and factor levels for that variable list.

The model specification consists of a model name and, for the DISCRETE and LINEAR
models, an optional MORE or LESS keyword to indicate the direction of the expected
relationship. Values and value labels can also be specified.

MORE and LESS keywords will not affect estimates of utilities. They are used simply to
identify subjects whose estimates do not match the expected direction.

The four available models are as follows:

DISCRETE No assumption. The factor levels are categorical, and no assumption is made about

the relationship between the factor and the scores or ranks. This setting is the
default. Specify keyword MORE after DISCRETE to indicate that higher levels of a
factor are expected to be more preferred. Specify keyword LESS after DISCRETE
to indicate that lower levels of a factor are expected to be more preferred.

LINEAR Linear relationship. The scores or ranks are expected to be linearly related to the

factor. Specify keyword MORE after LINEAR to indicate that higher levels of a factor
are expected to be more preferred. Specify keyword LESS after LINEAR to indicate
that lower levels of a factor are expected to be more preferred.

IDEAL Quadratic relationship, decreasing preference. A quadratic relationship is expected

between the scores or ranks and the factor. It is assumed that there is an ideal level
for the factor, and distance from this ideal point, in either direction, is associated
with decreasing preference. Factors that are described with this model should have
at least three levels.

ANTIIDEAL Quadratic relationship, increasing preference. A quadratic relationship is expected

between the scores or ranks and the factor. It is assumed that there is a worst level
for the factor, and distance from this point, in either direction, is associated with
increasing preference. Factors that are described with this model should have at
least three levels.

The DISCRETE model is assumed for those variables that are not listed on the FACTORS
subcommand.

When a MORE or LESS keyword is used with DISCRETE or LINEAR, a reversal is noted
when the expected direction does not occur.

Both IDEAL and ANTIIDEAL create a quadratic function for the factor. The only difference
is whether preference increases or decreases with distance from the point. The estimated
utilities are the same for these two models. A reversal is noted when the expected model
(IDEAL or ANTIIDEAL) does not occur.

The optional value and value label lists allow you to recode data and/or replace value labels.
The new values, in the order in which they appear on the value list, replace existing values,
starting with the smallest existing value. If a new value is not specified for an existing value,
the value remains unchanged.

271
CONJOINT

m New value labels are specified in apostrophes or quotation marks. New values without new
labels retain existing labels; new value labels without new values are assigned to values in the
order in which they appear, starting with the smallest existing value.

B For each factor that is recoded, a table is displayed, showing the original and recoded values
and the value labels.

m [f the factor levels are coded in discrete categories (for example, 1, 2, 3), these values are
the values used by CONJOINT in computations, even if the value labels contain the actual
values (for example, 80, 100, 130). Value labels are never used in computations. You can
recode the values as described above to change the coded values to the real values. Recoding
does not affect DISCRETE factors but does change the coefficients of LINEAR, IDEAL, and
ANTIIDEAL factors.

®m In the output, variables are described in the following order:
1. All DISCRETE variables in the order in which they appear on the FACTORS subcommand.
2. All LINEAR variables in the order in which they appear on the FACTORS subcommand.

3. All IDEAL and ANTIIDEAL factors in the order in which they appear on the FACTORS
subcommand.

Example

CONJOINT DATA='DATA.SAV'

/FACTORS=PRICE (LINEAR LESS) SPEED (IDEAL 70 100 130)
WARRANTY (DISCRETE MORE)

/RANK=RANK1 TO RANK15.

m The FACTORS subcommand specifies the expected relationships. A linear relationship is
expected between price and rankings, so that the higher the price, the lower the preference
(higher ranks). A quadratic relationship is expected between speed levels and rankings, and
longer warranties are expected to be associated with greater preference (lower ranks).

m The SPEED factor has a new value list. If the existing values were 1, 2, and 3, 70 replaces 1,
100 replaces 2, and 130 replaces 3.

B Any variable in the plan file (except CARD and STATUS) that is not listed on the FACTORS
subcommand uses the DISCRETE model.

PRINT Subcommand

PRINT controls whether your output includes the analysis of the experimental data, the results of
the simulation data, both, or none.

The following keywords are available:

ANALYSIS Only the results of the experimental data analysis are included.

SIMULATION Only the results of the simulation data analysis are included. The results of
three simulation models—maximum utility, Bradley-Terry-Luce (BTL), and
logit—are displayed.

272

CONJOINT
SUMMARYONLY Only the summaries in the output are included, not the individual subjects.
Thus, if you have a large number of subjects, you can see the summary results
without having to generate output for each subject.
ALL The results of both the experimental data and simulation data analyses are
included. ALL is the default.
NONE No results are written to the display file. This keyword is useful if you are

interested only in writing the utility file (see “UTILITY Subcommand” below).

UTILITY Subcommand

UTILITY writes a utility file to the specified file. The utility file is an SPSS data file.

If UTILITY is not specified, no utility file is written.
UTILITY is followed by the name of the file to be written.
The file is specified in the usual manner for your operating system.

The utility file contains one case for each subject. If SUBJECT is not specified, the utility file
contains a single case with statistics for the group as a whole.

The variables that are written to the utility file are in the following order:

Any SPLIT FILE variables in the active dataset.
Any SUBJECT variable.

The constant for the regression equation for the subject. The regression equation constant is
named CONSTANT.

For DISCRETE factors, all of the utilities that are estimated for the subject. The names of the
utilities that are estimated with DISCRETE factors are formed by appending a digit after the
factor name. The first utility gets a 1, the second utility gets a 2, and so on.

For LINEAR factors, a single coefficient. The name of the coefficient for LINEAR factors is
formed by appending L to the factor name. (To calculate the predicted score, multiply
the factor value by the coefficient.)

For IDEAL or ANTIIDEAL factors, two coefficients. The name of the two coefficients for
IDEAL or ANTIIDEAL factors are formed by appending L and _Q, respectively, to the factor
name. (To use these coefficients in calculating the predicted score, multiply the factor value
by the first coefficient and add that to the product of the second coefficient and the square

of the factor value.)

The estimated ranks or scores for all profiles in the plan file. The names of the estimated
ranks or scores are of the form SCOREn for experimental and holdout profiles, or SIMULn
for simulation profiles, where # is the position in the plan file. The name is SCORE for
experimental and holdout profiles even if the data are ranks.

If the variable names that are created are too long, letters are truncated from the end of the original
variable name before new suffixes are appended.

273
CONJOINT

PLOT Subcommand

The PLOT subcommand produces plots in addition to the output that is usually produced by
CONJOINT.

The following keywords are available for this subcommand:

SUMMARY Produces a bar chart of the importance values for all variables, plus a utility
bar chart for each variable. This setting is the default if the PLOT subcommand
is specified with no keywords.

SUBJECT Plots a clustered bar chart of the importance values for each factor, clustered by
subjects, and one clustered bar chart for each factor, showing the utilities for each
factor level, clustered by subjects. 1f no SUBJECT subcommand was specified
naming the variables, no plots are produced and a warning is displayed.

ALL Plots both summary and subject charts.

NONE Does not produce any charts. This setting is the default if the subcommand is
omitted.

CORRELATIONS

CORRELATIONS VARIABLES= varlist [WITH varlist] [/varlist...]

[/MISSING={PAIRWISE**} [{INCLUDE}]]
{LISTWISE } {EXCLUDE}

[/PRINT={TWOTAIL**} {SIG**}]
{ONETAIL } {NOSIG}

[/MATRIX=OUT ({* 1
{'savfile'| 'dataset'}

[/STATISTICS=[DESCRIPTIVES] [XPROD] [ALL]]
**Default if the subcommand is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

CORRELATIONS VARIABLES=FOOD RENT PUBTRANS TEACHER COOK ENGINEER
/MISSING=INCLUDE.

Overview

CORRELATIONS (alias PEARSON CORR) produces Pearson product-moment correlations with
significance levels and, optionally, univariate statistics, covariances, and cross-product deviations.
Other procedures that produce correlation matrices are PARTIAL CORR, REGRESSION,
DISCRIMINANT, and FACTOR.

Options

Types of Matrices. A simple variable list on the VARTABLES subcommand produces a square
matrix. You can also request a rectangular matrix of correlations between specific pairs of
variables or between variable lists using the keyword WITH on VARIABLES.

Significance Levels. By default, CORRELATIONS displays the number of cases and significance
levels for each coefficient. Significance levels are based on a two-tailed test. You can request a
one-tailed test, and you can display the significance level for each coefficient as an annotation
using the PRINT subcommand.

Additional Statistics. You can obtain the mean, standard deviation, and number of nonmissing
cases for each variable, and the cross-product deviations and covariance for each pair of variables
using the STATISTICS subcommand.

Matrix Output. You can write matrix materials to a data file using the MATRIX subcommand. The
matrix materials include the mean, standard deviation, number of cases used to compute each
coefficient, and Pearson correlation coefficient for each variable. The matrix data file can be
read by several other procedures.

274

275
CORRELATIONS

Basic Specification

m The basic specification is the VARTABLES subcommand, which specifies the variables to be
analyzed.

B By default, CORRELATIONS produces a matrix of correlation coefficients. The number of
cases and the significance level are displayed for each coefficient. The significance level is
based on a two-tailed test.

Subcommand Order
B The VARIABLES subcommand must be first.

B The remaining subcommands can be specified in any order.

Operations
® The correlation of a variable with itself is displayed as 1.0000.
m A correlation that cannot be computed is displayed as a period (.).

B CORRELATIONS does not execute if long or short string variables are specified on the variable
list.

Limitations
B A maximum of 40 variable lists.
B A maximum of 500 variables total per command.

B A maximum of 250 syntax elements. Each individual occurrence of a variable name,
keyword, or special delimiter counts as 1 toward this total. Variables implied by the TO
keyword do not count toward this total.

Examples

CORRELATIONS VARIABLES=FOOD RENT PUBTRANS TEACHER COOK ENGINEER
/VARIABLES=FOOD RENT WITH COOK TEACHER MANAGER ENGINEER
/MISSING=INCLUDE.

m The first VARIABLES subcommand requests a square matrix of correlation coefficients among
the variables FOOD, RENT, PUBTRANS, TEACHER, COOK, and ENGINEER.

B The second VARIABLES subcommand requests a rectangular correlation matrix in which
FOOD and RENT are the row variables and COOK, TEACHER, MANAGER, and ENGINEER
are the column variables.

B MISSING requests that user-missing values be included in the computation of each coefficient.

VARIABLES Subcommand

VARIABLES specifies the variable list.

B A simple variable list produces a square matrix of correlations of each variable with every
other variable.

276
CORRELATIONS

B Variable lists joined by the keyword wITH produce a rectangular correlation matrix. Variables
before WITH define the rows of the matrix and variables after wITH define the columns.

B The keyword ALL can be used on the variable list to refer to all user-defined variables.

B You can specify multiple VARIABLES subcommands on a single CORRELATIONS command.
The slash between the subcommands is required; the keyword VARIABLES is not.

PRINT Subcommand

PRINT controls whether the significance level is based on a one- or two-tailed test and whether
the number of cases and the significance level for each correlation coefficient are displayed.

TWOTAIL Two-tailed test of significance. This test is appropriate when the direction of the
relationship cannot be determined in advance, as is often the case in exploratory
data analysis. This is the default.

ONETAIL One-tailed test of significance. This test is appropriate when the direction of
the relationship between a pair of variables can be specified in advance of the
analysis.

SIG Do not flag significant values. SIG is the default.
NOSIG Flag significant values. Values significant at the 0.05 level are flagged with a

single asterisk; those that are significant at the 0.01 level are flagged with two
asterisks.

STATISTICS Subcommand

The correlation coefficients are automatically displayed in the Correlations table for an analysis
specified by a VARIABLES list. STATISTICS requests additional statistics.

DESCRIPTIVES Display mean, standard deviation, and number of nonmissing cases for
each variable on the Variables list in the Descriptive Statistics table. This
table precedes all Correlations tables. Variables specified on more than one
VARIABLES list are displayed only once. Missing values are handled on a
variable-by-variable basis regardless of the missing-value option in effect for
the correlations.

XPROD Display cross-product deviations and covariance for each pair of variables
in the Correlations table(s).

ALL All additional statistics. This produces the same statistics as DESCRIPTIVES
and XPROD together.

MISSING Subcommand

MISSING controls the treatment of missing values.

277

CORRELATIONS

B The PATRWISE and LISTWISE keywords are alternatives; however, each can be specified
with INCLUDE or EXCLUDE.

® The default is LISTWISE and EXCLUDE.

PAIRWISE Exclude missing values pairwise. Cases that have missing values for one or both
of a pair of variables for a specific correlation coefficient are excluded from the
computation of that coefficient. Since each coefficient is based on all cases that
have valid values for that particular pair of variables, this can result in a set of
coefficients based on a varying number of cases. The valid number of cases is
displayed in the Correlations table. This is the default.

LISTWISE Exclude missing values listwise. Cases that have missing values for any variable
named on any VARIABLES list are excluded from the computation of all
coefficients across lists. The valid number of cases is the same for all analyses
and is displayed in a single annotation.

INCLUDE Include user-missing values. User-missing values are included in the analysis.

EXCLUDE Exclude all missing values. Both user- and system-missing values are excluded
from the analysis.

MATRIX Subcommand

MATRIX writes matrix materials to an SPSS-format data file or previously declared dataset
(DATASET DECLARE command). The matrix materials include the mean and standard
deviation for each variable, the number of cases used to compute each coefficient, and the
Pearson correlation coefficients. Several procedures can read matrix materials produced by
CORRELATIONS, including PARTIAL CORR, REGRESSION, FACTOR, and CLUSTER.

B CORRELATIONS cannot write rectangular matrices (those specified with the keyword WITH)
to a file.

m [f you specify more than one variable list on CORRELATIONS, only the last list that does not
use the keyword WITH is written to the matrix data file.

m The keyword ouT specifies the file to which the matrix is written. Specify an asterisk
to replace the active dataset or a quoted file specification or dataset name, enclosed in
parentheses.

B Documents from the original file will not be included in the matrix file and will not be present
if the matrix file becomes the working data file.

Format of the Matrix Data File

m The matrix data file has two special variables created by the program: ROWTYPE and
VARNAME . The variable ROWTYPE is a short string variable with values MEAN,
STDDEYV, N, and CORR (for Pearson correlation coefficient). The next variable, VARNAME
is a short string variable whose values are the names of the variables used to form the
correlation matrix. When ROWTYPE _is CORR, VARNAME __ gives the variable associated
with that row of the correlation matrix.

B The remaining variables in the file are the variables used to form the correlation matrix.

278

CORRELATIONS

Split Files

m When split-file processing is in effect, the first variables in the matrix file will be split
variables, followed by ROWTYPE , VARNAME , and the variables used to form the
correlation matrix.

m A full set of matrix materials is written for each subgroup defined by the split variables.
B A split variable cannot have the same name as any other variable written to the matrix data file.

m [f split-file processing is in effect when a matrix is written, the same split-file specifications
must be in effect when that matrix is read by another procedure.

Missing Values

® With pairwise treatment of missing values (the default), a matrix of the number of cases used
to compute each coefficient is included with the matrix materials.

m With listwise treatment, a single number indicating the number of cases used to calculate
all coefficients is included.

Example

GET FILE=CITY /KEEP FOOD RENT PUBTRANS TEACHER COOK ENGINEER.
CORRELATIONS VARIABLES=FOOD TO ENGINEER
/MATRIX OUT (CORRMAT) .

B CORRELATIONS reads data from the file CITY and writes one set of matrix materials to the
file CORRMAT. The working file is still CITY. Subsequent commands are executed on CITY.

Example

GET FILE=CITY /KEEP FOOD RENT PUBTRANS TEACHER COOK ENGINEER.
CORRELATIONS VARIABLES=FOOD TO ENGINEER
/MATRIX OUT(*) .
LIST.
DISPLAY DICTIONARY.

B CORRELATIONS writes the same matrix as in the example above. However, the matrix data

file replaces the working file. The LIST and DISPLAY commands are executed on the matrix
file, not on the CITY file.

Example

CORRELATIONS VARIABLES=FOOD RENT COOK TEACHER MANAGER ENGINEER
/FOOD TO TEACHER /PUBTRANS WITH MECHANIC
/MATRIX OUT(*) .

B Only the matrix for FOOD T0 TEACHER is written to the matrix data file because it is the
last variable list that does not use the keyword WITH.

CORRESPONDENCE

CORRESPONDENCE is available in the Categories option.

CORRESPONDENCE
/TABLE = {rowvar (min, max) BY colvar (min, max)}
{ALL (# of rows, # of columns) }
[/SUPPLEMENTARY = [{rowvar (valuelist)}] [{colvar (valuelist)}]]
{ROW (valuelist) } {COLUMN (valuelist)}
[/EQUAL = [{rowvar (valuelist)}] [{colvar (valuelist)}]]

{ROW (valuelist) } {COLUMN (valuelist)}

[/MEASURE = {CHISQ**}]
{EUCLID }

[/STANDARDIZE = {RMEAN
{CMEAN

1]
}
{RCMEAN* * }
)
}

{RSUM
{CsuM

[/DIMENSION = {2** 11
{value}

[/NORMALIZATION = {SYMMETRICAL**}]
{PRINCIPAL }
{RPRINCIPAL }
{CPRINCIPAL }
{value }

[/PRINT = [TABLE**] [RPROF] [CPROF] [RPOINTS**] [CPOINTS**]
[RCONF] [CCONF] [PERMUTATION[(n)]] [DEFAULT] [NONE]]

[/PLOT = [NDIM({value,value})]
{value,MAX }
[RPOINTS[(n)]] [CPOINTS[(n)] [TRROWS[(n)]]
[TRCOLUMNS|[(n)]] [BIPLOT**[(n)]] [NONE]]

[/OUTFILE = [SCORE('savfile'|'dataset')] [VARIANCE ('savfile'|'dataset"')]
**Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Overview
CORRESPONDENCE displays the relationships between rows and columns of a two-way table

graphically by a biplot. It computes the row and column scores and statistics and produces plots
based on the scores. Also, confidence statistics are computed.

Options

Number of Dimensions. You can specify how many dimensions CORRESPONDENCE should
compute.

279

280

CORRESPONDENCE

Supplementary Points. You can specify supplementary rows and columns.
Equality Restrictions. You can restrict rows and columns to have equal scores.
Measure. You can specify the distance measure to be the chi-square of Euclidean.
Standardization. You can specify one of five different standardization methods.

Method of Normalization. You can specify one of five different methods for normalizing the row
and column scores.

Confidence Statistics. You can request computation of confidence statistics (standard deviations
and correlations) for row and column scores. For singular values, confidence statistics are always
computed.

Data Input. You can analyze individual casewise data, aggregated data, or table data.
Display Output. You can control which statistics are displayed and plotted.

Wiriting Matrices. You can write the row and column scores and the confidence statistics
(variances and covariances) for the singular values to external files.

Basic Specification

m The basic specification is CORRESPONDENCE and the TABLE subcommand. By default,
CORRESPONDENCE computes a two-dimensional solution and displays the correspondence
table, the summary table, an overview of the row and column scores, and a biplot of the row
and column points.

Subcommand Order
B The TABLE subcommand must appear first.

® All other subcommands can appear in any order.

Syntax Rules

® Only one keyword can be specified on the MEASURE subcommand.

B Only one keyword can be specified on the STANDARDIZE subcommand.

B Only one keyword can be specified on the NORMALIZATION subcommand.
|

Only one parameter can be specified on the DIMENSION subcommand.

Operations

m [f a subcommand is specified more than once, only the last occurrence is executed.

Limitations

m The table input data and the aggregated input data cannot contain negative values.
CORRESPONDENCE will treat such values as 0.

Rows and columns that are specified as supplementary cannot be equalized.
The maximum number of supplementary points for a variable is 200.

The maximum number of equalities for a variable is 200.

281

Example

CORRESPONDENCE

CORRESPONDENCE TABLE=MENTAL(1,4) BY SES(1,6)
/PRINT=RPOINTS CPOINTS
/PLOT=RPOINTS CPOINTS.

Two variables, MENTAL and SES, are specified on the TABLE subcommand. MENTAL has
values ranging from 1 to 4, and SES has values ranging from 1 to 6.

The summary table and overview tables of the row and column scores are displayed.

The row points plot and the column points plot are produced.

TABLE Subcommand

TABLE specifies the row and column variables along with their integer value ranges. The two
variables are separated by the keyword BY.

m The TABLE subcommand is required.

Casewise Data

m Each variable is followed by an integer value range in parentheses. The value range consists
of the variable’s minimum value and its maximum value.

® Values outside of the specified range are not included in the analysis.

B Values do not have to be sequential. Empty categories yield a zero in the input table and do
not affect the statistics for other categories.

Example

DATA LIST FREE/VAR1 VAR2.
BEGIN DATA

AP woooaidhidbWoOW

WNNWWWNDNR R

END DATA.
CORRESPONDENCE TABLE=VAR1 (3,6) BY VAR2(1,3).

DATA LIST defines two variables, VARI and VAR2.
VARI has three levels, coded 3, 4, and 6. VAR2 also has three levels, coded 1, 2, and 3.

Since a range of (3,6) is specified for VAR, CORRESPONDENCE defines four categories, coded
3,4, 5, and 6. The empty category, 5, for which there is no data, receives system-missing
values for all statistics and does not affect the analysis.

282

CORRESPONDENCE

Aggregated Data

To analyze aggregated data, such as data from a crosstabulation where cell counts are available
but the original raw data are not, you can use the WEIGHT command before CORRESPONDENCE.

Example

To analyze a 3x3 table, such as the one shown below, you could use these commands:

DATA LIST FREE/ BIRTHORD ANXIETY COUNT.
BEGIN DATA

WWWNNDNR R
WNRFRPWNDE WN R
N
o

END DATA.
WEIGHT BY COUNT.
CORRESPONDENCE TABLE=BIRTHORD (1,3) BY ANXIETY (1,3).

® The WEIGHT command weights each case by the value of COUNT, as if there are 48 subjects
with BIRTHORD=1 and ANXIETY=1, 27 subjects with BIRTHORD=1 and ANXIETY=2,
and so on.

B CORRESPONDENCE can then be used to analyze the data.

m [f any of the table cell values (the values of the WEIGHT variable) equals 0, the WEIGHT
command issues a warning, but the CORRESPONDENCE analysis is done correctly.

m The table cell values (the values of the WETGHT variable) cannot be negative.

Table 32-1
3 x 3 table
Anxiety
High |Med |Low
Birth order | First 48 27 22
Second 33 20 39
Other 29 42 47
Table Data

m The cells of a table can be read and analyzed directly by using the keyword ALL after TABLE.

® The columns of the input table must be specified as variables on the DATA LIST command.
Only columns are defined, not rows.

m ALl is followed by the number of rows in the table, a comma, and the number of columns in
the table, all in parentheses.

® The row variable is named ROW, and the column variable is named COLUMN.

B The number of rows and columns specified can be smaller than the actual number of rows and
columns if you want to analyze only a subset of the table.

283

CORRESPONDENCE

m The variables (columns of the table) are treated as the column categories, and the cases (rows
of the table) are treated as the row categories.

B Row categories can be assigned values (category codes) when you specify TABLE=ALL by
the optional variable ROWCAT . This variable must be defined as a numeric variable with
unique values corresponding to the row categories. If ROWCAT _is not present, the row
index (case) numbers are used as row category values.

Example

DATA LIST /ROWCAT_ 1 COLl1l 3-4 COL2 6-7 COL3 9-10.

BEGIN DATA

1 50 19 26

2 16 40 34

3 12 35 65

4 11 20 58

END DATA.

VALUE LABELS ROWCAT_ 1 ‘ROW1' 2 ‘ROW2' 3 ‘ROW3' 4 ‘ROW4'.
CORRESPONDENCE TABLE=ALL(4,3) .

B DATA LIST defines the row category naming variable ROWCAT _and the three columns of
the table as the variables.

m The TABLE=ALL specification indicates that the data are the cells of a table. The (4,3)
specification indicates that there are four rows and three columns.

B The column variable is named COLUMN with categories labeled COLI, COL2, and COL3.
B The row variable is named ROW with categories labeled ROW1, ROW2, ROW3, and ROWA4.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want CORRESPONDENCE to compute.

® If you do not specify the DIMENSION subcommand, CORRESPONDENCE computes two
dimensions.

B DIMENSION is followed by a positive integer indicating the number of dimensions. If this
parameter is omitted, a value of 2 is assumed.

® In general, you should choose as few dimensions as needed to explain most of the variation.
The minimum number of dimensions that can be specified is 1. The maximum number of
dimensions that can be specified equals the minimum of the number of active rows and the
number of active columns minus 1. An active row or column is a nonsupplementary row
or column that is used in the analysis. For example, in a table where the number of rows is
5 (2 of which are supplementary) and the number of columns is 4, the number of active
rows (3) is smaller than the number of active columns (4). Thus, the maximum number of
dimensions that can be specified is (5—2)—1, or 2. Rows and columns that are restricted to
have equal scores count as 1 toward the number of active rows or columns. For example,
in a table with five rows and four columns, where two columns are restricted to have equal
scores, the number of active rows is 5 and the number of active columns is (4—1), or 3.
The maximum number of dimensions that can be specified is (3—1), or 2. Empty rows and

284

CORRESPONDENCE

columns (rows or columns with no data, all zeros, or all missing data) are not counted toward
the number of rows and columns.

® [f more than the maximum allowed number of dimensions is specified, CORRESPONDENCE
reduces the number of dimensions to the maximum.

SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the rows and/or columns that you want to treat as
supplementary (also called passive or illustrative).

m For casewise data, the specification on SUPPLEMENTARY is the row and/or column variable
name, followed by a value list in parentheses. The values must be in the value range specified
on the TABLE subcommand for the row or column variable.

m For table data, the specification on SUPPLEMENTARY is ROW and/or COLUMN, followed
by a value list in parentheses. The values represent the row or column indices of the table
input data.

B The maximum number of supplementary rows or columns is the number of rows or columns
minus 2. Rows and columns that are restricted to have equal scores count as 1 toward the
number of rows or columns.

® Supplementary rows and columns cannot be equalized.

Example

CORRESPONDENCE TABLE=MENTAL(1,8) BY SES(1,6)
/SUPPLEMENTARY MENTAL (3) SES(2,6).

B SUPPLEMENTARY specifies the third level of MENTAL and the second and sixth levels of
SES to be supplementary.

Example

CORRESPONDENCE TABLE=ALL (8, 6)
/SUPPLEMENTARY ROW(3) COLUMN(2,6) .

B SUPPLEMENTARY specifies the third level of the row variable and the second and sixth levels
of the column variable to be supplementary.

EQUAL Subcommand

The EQUAL subcommand specifies the rows and/or columns that you want to restrict to have
equal scores.

m For casewise data, the specification on EQUAL is the row and/or column variable name,
followed by a list of at least two values in parentheses. The values must be in the value range
specified on the TABLE subcommand for the row or column variable.

m For table data, the specification on EQUAL is ROW and/or COLUMN, followed by a value list
in parentheses. The values represent the row or column indices of the table input data.

® Rows or columns that are restricted to have equal scores cannot be supplementary.

285
CORRESPONDENCE

B The maximum number of equal rows or columns is the number of active rows or columns
minus 1.

Example

CORRESPONDENCE TABLE=MENTAL(1,8) BY SES(1,6)
/EQUAL MENTAL(1,2) (6,7) SES(1,2,3).

B EQUAL specifies the first and second level of MENTAL, the sixth and seventh level of
MENTAL, and the first, second, and third levels of SES to have equal scores.

MEASURE Subcommand

The MEASURE subcommand specifies the measure of distance between the row and column
profiles.

B Only one keyword can be used.

The following keywords are available:

CHISQ Chi-square distance. This is the weighted distance, where the weight is the mass
of the rows or columns. This is the default specification for MEASURE and is the
necessary specification for standard correspondence analysis.

EUCLID Euclidean distance. The distance is the square root of the sum of squared
differences between the values for two rows or columns.

STANDARDIZE Subcommand

When MEASURE=EUCLID, the STANDARDIZE subcommand specifies the method of
standardization.

B Only one keyword can be used.

B [f MEASURE is CHISQ, only RCMEAN standardization can be used, resulting in standard
correspondence analysis.

The following keywords are available:

RMEAN The row means are removed.

CMEAN The column means are removed.

RCMEAN Both the row and column means are removed. This is the default specification.
RSUM First the row totals are equalized and then the row means are removed.
CSUM First the column totals are equalized and then the column means are removed.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five methods for normalizing the row and
column scores. Only the scores and confidence statistics are affected; contributions and profiles
are not changed.

286

CORRESPONDENCE

The following keywords are available:

SYMMETRICAL For each dimension, rows are the weighted average of columns divided
by the matching singular value, and columns are the weighted average
of rows divided by the matching singular value. This is the default if the
NORMALIZATION subcommand is not specified. Use this normalization
method if you are primarily interested in differences or similarities between
rows and columns.

PRINCIPAL Distances between row points and distances between column points are
approximations of chi-square distances or of Euclidean distances (depending
on MEASURE). The distances represent the distance between the row or
column and its corresponding average row or column profile. Use this
normalization method if you want to examine both differences between
categories of the row variable and differences between categories of the
column variable (but not differences between variables).

RPRINCIPAL Distances between row points are approximations of chi-square distances or
of Euclidean distances (depending on MEASURE). This method maximizes
distances between row points, resulting in row points that are weighted
averages of the column points. This is useful when you are primarily interested
in differences or similarities between categories of the row variable.

CPRINCIPAL Distances between column points are approximations of chi-square distances
or of Euclidean distances (depending on MEASURE). This method maximizes
distances between column points, resulting in column points that are weighted
averages of the row points. This is useful when you are primarily interested in
differences or similarities between categories of the column variable.

The fifth method allows the user to specify any value in the range —1 to +1, inclusive. A value
of 1 is equal to the RPRINCIPAL method, a value of 0 is equal to the SYMMETRICAL method,
and a value of —1 is equal to the CPRINCIPAL method. By specifying a value between —1 and
1, the user can spread the inertia over both row and column scores to varying degrees. This
method is useful for making tailor-made biplots.

PRINT Subcommand

Use PRINT to control which of several correspondence statistics are displayed. The summary
table (singular values, inertia, proportion of inertia accounted for, cumulative proportion of inertia
accounted for, and confidence statistics for the maximum number of dimensions) is always
produced. If PRINT is not specified, the input table, the summary table, the overview of row
points table, and the overview of column points table are displayed.

The following keywords are available:

TABLE A crosstabulation of the input variables showing row and column
marginals.

RPROFILES The row profiles. PRINT=RPROFILES is analogous to the CELLS=ROW
subcommand in CROSSTABS.

CPROFILES The column profiles. PRINT=CPROFILES is analogous to the CELLS=

COLUMN subcommand in CROSSTABS.

RPOINTS Overview of row points (mass, scores, inertia, contribution of the points
to the inertia of the dimension, and the contribution of the dimensions to
the inertia of the points).

287

CPOINTS

RCONF
CCONF

PERMUTATION(n)

NONE
DEFAULT

PLOT Subcommand

CORRESPONDENCE

Overview of column points (mass, scores, inertia, contribution of the
points to the inertia of the dimension, and the contribution of the
dimensions to the inertia of the points).

Confidence statistics (standard deviations and correlations) for the active
row points.

Confidence statistics (standard deviations and correlations) for the active
column points.

The original table permuted according to the scores of the rows and
columns. PERMUTATION can be followed by a number in parentheses
indicating the maximum number of dimensions for which you want
permuted tables. The default number of dimensions is 1.

No output other than the SUMMARY table.

TABLE, RPOINTS, CPOINTS, and the SUMMARY tables. These
statistics are displayed if you omit the PRINT subcommand.

Use PLOT to produce a biplot of row and column points, plus plots of the row points, column
points, transformations of the categories of the row variable, and transformations of the categories
of the column variable. If PLOT is not specified or is specified without keywords, a biplot is

produced.

The following keywords are available:

TRROWS(n)
TRCOLUMNS(n)

RPOINTS(n)
CPOINTS(n)
BIPLOT(n)

NONE

Transformation plots for the rows (row category scores against row category
indicator values).

Transformation plots for the columns (column category scores against column
category indicator values).

Plot of the row points.
Plot of the column points.

Biplot of the row and column points. This is the default plot. This plot is not
available when NORMALIZATION=PRINCIPAL.

No plots.

m For all of the keywords except NONE the user can specify an optional parameter / in
parentheses in order to control the global upper boundary of value label lengths in the plot.
The label length parameter / can take any nonnegative integer less than or equal to the
applicable maximum length of 60. If / is not specified, CORRESPONDENCE assumes that
each value label at its full length is displayed. If / is an integer larger than the applicable
maximum, then we reset it to the applicable maximum, but do not issue a warning. If a
positive value of / is given but if some or all of the category values do not have labels, then
for those values the values themselves are used as the labels.

In addition to the plot keywords, the following can be specified:

NDIM(value,value)

Dimension pairs to be plotted. NDIM is followed by a pair of values
in parentheses. If NDIM is not specified or if NDIM is specified without
parameter values, a matrix scatterplot including all dimensions is
produced.

288

CORRESPONDENCE

The first value must be any integer from 1 to the number of dimensions in the solution minus 1.

The second value must be an integer from 2 to the number of dimensions in the solution. The
second value must exceed the first. Alternatively, the keyword MAX can be used instead of a
value to indicate the highest dimension of the solution.

B For TRROWS and TRCOLUMNS, the first and second values indicate the range of dimensions for
which the plots are created.

B For RPOINTS, CPOINTS, and BIPLOT, the first and second values indicate plotting pairs of
dimensions. The first value indicates the dimension that is plotted against higher dimensions.
The second value indicates the highest dimension to be used in plotting the dimension pairs.

Example

CORRESPONDENCE TABLE=MENTAL(1,4) BY SES(1,6)
/PLOT NDIM(1,3) BIPLOT(5).

B BIPLOT and NDIM(1, 3) requests that a scatterplot for dimensions 1 and 2, and a scatterplot
for dimensions 1 and 3 should be produced.

m The 5 following BIPLOT indicates that only the first five characters of each label are to be
shown in the biplot matrix.

Example

CORRESPONDENCE TABLE=MENTAL(1,4) BY SES(1,6)
/DIMENSION = 3
/PLOT NDIM(1l,MAX) TRROWS.

m Three transformation plots for the row categories are produced, one for each dimension
from 1 to the highest dimension of the analysis (in this case, 3). The label parameter is not
specified, and so the category labels in the plot are shown up their full lengths.

OUTFILE Subcommand

Use OUTFILE to write row and column scores and/or confidence statistics (variances and

covariances) for the singular values and row and column scores to an SPSS data file or previously
declared dataset.

OUTFILE must be followed by one or both of the following keywords:

SCORE (‘file’|’dataset’) Write row and column scores.
VARIANCE (‘file’|’dataset’) Write variances and covariances.

®m Filenames should be enclosed in quotes and are stored in the working directory unless a path
is included as part of the file specification. Datasets are available during the current session
but are not available in subsequent sessions unless you explicitly save them as data files. The
names should be different for the each of the keywords.

® For VARIANCE, supplementary and equality constrained rows and columns are not produced
in the external file.

289

CORRESPONDENCE

The variables in the SCORE matrix data file and their values are:

ROWTYPE _
LEVEL_

VARNAME _
DIM1...DIMn

String variable containing the value ROW for all of the rows and COLUMN

for all of the columns.

String variable containing the values (or value labels, if present) of each
original variable.

String variable containing the original variable names.
Numerical variables containing the row and column scores for each

dimension. Each variable is named DIMn, where n represents the dimension
number.

The variables in the VARIANCE matrix data file and their values are:

ROWTYPE _
VARNAME _

LEVEL_

DIMNMBR _
DIM1...DIMn

String variable containing the value COV for all of the cases in the file.

String variable containing the value SINGULAR, the row variable s name, and
the column variable’s name.

String variable containing the row variable’s values (or labels), the column
variable s values (or labels), and a blank value for VARNAME = SINGULAR.

String variable containing the dimension number.
Numerical variables containing the variances and covariances for each

dimension. Each variable is named DIMn, where n represents the dimension
number.

COUNT

COUNT varname=varlist(value list) [/varname=...]
Keywords for numeric value lists:
LOWEST, LO, HIGHEST, HI, THRU, MISSING, SYSMIS

This command does not read the active dataset. It is stored, pending execution with the next
command that reads the dataset. For more information, see Command Order on p. 21.

Example

COUNT TARGET=V1 V2 V3 (2).

Overview

COUNT creates a numeric variable that, for each case, counts the occurrences of the same value
(or list of values) across a list of variables. The new variable is called the target variable. The
variables and values that are counted are the criterion variables and values. Criterion variables
can be either numeric or string.

Basic Specification

The basic specification is the target variable, an equals sign, the criterion variable(s), and the
criterion value(s) enclosed in parentheses.

Syntax Rules
m Use a slash to separate the specifications for each target variable.

m The criterion variables specified for a single target variable must be either all numeric or
all string.

m FEach value on a list of criterion values must be separated by a comma or space. String values
must be enclosed in apostrophes.

B The keywords THRU, LOWEST (LO), HIGHEST (HI), SYSMIS, and MISSING can be used only
with numeric criterion variables.

m A variable can be specified on more than one criterion variable list.

B You can use the keyword TO to specify consecutive criterion variables that have the same
criterion value or values.

B You can specify multiple variable lists for a single target variable to count different values for
different variables.

290

291
COUNT

Operations

m Target variables are always numeric and are initialized to 0 for each case. They are assigned a
dictionary format of 8. 2.

m [f the target variable already exists, its previous values are replaced.

B COUNT ignores the missing-value status of user-missing values. It counts a value even if that
value has been previously declared as missing.

m The target variable is never system-missing. To define user-missing values for target
variables, use the RECODE or MISSING VALUES command.

B SYSMIS counts system-missing values for numeric variables.

B MISSING counts both user- and system-missing values for numeric variables.

Examples

Counting Occurrences of a Single Value

COUNT TARGET=V1 V2 V3 (2).

B The value of TARGET for each case will be either 0, 1, 2, or 3, depending on the number of
times the value 2 occurs across the three variables for each case.

B TARGET is a numeric variable with an F8 .2 format.

Counting Occurrences of a Range of Values and System-Missing Values

COUNT QLOW=Q1 TO Q10 (LO THRU 0)
/QSYSMIS=Q1 TO Q10 (SYSMIS) .

B Assuming that there are 10 variables between and including Q7 and Q10 in the active dataset,
QOLOW ranges from 0 to 10, depending on the number of times a case has a negative or 0
value across the variables Q1 to Q10.

m OSYSMIS ranges from 0 to 10, depending on how many system-missing values are
encountered for Q1 to Q10 for each case. User-missing values are not counted.

® Both QLOW and QSYSMIS are numeric variables and have F8 .2 formats.

Counting Occurrences of String Values

COUNT SVAR=V1 V2 ('male ') V3 V4 V5 ('female').

m SVAR ranges from 0 to 5, depending on the number of times a case has a value of male for V'/
and V2 and a value of female for V'3, V4, and V5.

® SVAR is a numeric variable with an F8. 2 format.

COXREG

COXREG is available in the Advanced Models option.

[TIME PROGRAM] *
[commands to compute time dependent covariates]

[CLEAR TIME PROGRAM]

COXREG VARIABLES = survival varname [WITH varlist]

/ STATUS = varname [EVENT] (vallist) [LOST (vallist)]

[/STRATA = varname]

[/CATEGORICAL = varname]

[/CONTRAST (varname) = {DEVIATION (refcat)}]
{SIMPLE (refcat) }
{DIFFERENCE
{HELMERT
{REPEATED
{POLYNOMIAL (metric) }
{SPECIAL (matrix) 1}
{INDICATOR (refcat)}

e

[/METHOD = {ENTER** } [{varlist}]]
{BSTEP [{COND}]} {ALL }
{LR }
{WALD}
{FSTEP [{COND}]}
{LR }
{WALD}

[/MISSING = {EXCLUDE**}]
{INCLUDE }

[/PRINT = [{DEFAULT**}] [CI ({95})1]
{SUMMARY } {n }
{BASELINE }
{CORR }
{ALL }
[/CRITERIA = [{BCON} ({1E-4*%*})] [LCON ({1E-5**})]
{PCON} { n } {n }
[ITERATE ({20**})]
{n }
[PIN({0.05**})] [POUT({0.1**})]]
{n } {n 1}
[/PLOT = [NONE**] [SURVIVAL] [HAZARD] [LML] [OMS]]
[/PATTERN = [varname (value)...] [BY varname]]
[/OUTFILE = [COEFF ('savfile' | 'dataset')] [TABLE('savfile' | 'dataset')]]
[/SAVE = tempvar [(newvarname)],tempvar ...]
[

/EXTERNAL]

* TIME PROGRAM is required to generate time-dependent covariates.

**Default if subcommand or keyword is omitted.
Temporary variables created by COXREG are:

SURVIVAL
SE
HAZARD

292

293

COXREG

RESID
LML
DFBETA
PRESID
XBETA

This command reads the active dataset and causes execution of any pending commands. For more
information, see Command Order on p. 21.

Example

TIME PROGRAM.
COMPUTE Z=AGE + T_.

COXREG SURVIVAL WITH Z
/STATUS SURVSTA EVENT (1) .

Overview

COXREG applies Cox proportional hazards regression to analysis of survival times—that is, the
length of time before the occurrence of an event. COXREG supports continuous and categorical
independent variables (covariates), which can be time-dependent. Unlike SURVIVAL and KM,
which compare only distinct subgroups of cases, COXREG provides an easy way of considering
differences in subgroups as well as analyzing effects of a set of covariates.

Options

Processing of Independent Variables. You can specify which of the independent variables are
categorical with the CATEGORICAL subcommand and control treatment of these variables with
the CONTRAST subcommand. You can select one of seven methods for entering independent
variables into the model using the METHOD subcommand. You can also indicate interaction
terms using the keyword BY between variable names on either the VARIABLES subcommand or
the METHOD subcommand.

Specifying Termination and Model-Building Criteria. You can specify the criteria for termination of
iteration and control variable entry and removal with the CRITERIA subcommand.

Adding New Variables to Active Dataset. You can use the SAVE subcommand to save the
cumulative survival, standard error, cumulative hazard, log-minus-log-of-survival function,
residuals, XBeta, and, wherever available, partial residuals and DfBeta.

Output. You can print optional output using the PRINT subcommand, suppress or request
plots with the PLOT subcommand, and, with the OUTFILE subcommand, write SPSS data
files containing coefficients from the final model or a survival table. When only time-constant
covariates are used, you can use the PATTERN subcommand to specify a pattern of covariate
values in addition to the covariate means to use for the plots and the survival table.

294

COXREG

Basic Specification

B The minimum specification on COXREG is a dependent variable with the STATUS
subcommand.

m To analyze the influence of time-constant covariates on the survival times, the minimum
specification requires either the WITH keyword followed by at least one covariate
(independent variable) on the VARTABLES subcommand or a METHOD subcommand with
at least one independent variable.

m To analyze the influence of time-dependent covariates on the survival times, the TIME
PROGRAM command and transformation language are required to define the functions for
the time-dependent covariate(s).

Subcommand Order

® The VARIABLES subcommand must be specified first; the subcommand keyword is optional.

B Remaining subcommands can be named in any order.

Syntax Rules

B Only one dependent variable can be specified for each COXREG command.

B Any number of covariates (independent variables) can be specified. The dependent variable
cannot appear on the covariate list.

m The covariate list is required if any of the METHOD subcommands are used without a variable
list or if the METHOD subcommand is not used.

® Only one status variable can be specified on the STATUS subcommand. If multiple STATUS
subcommands are specified, only the last specification is in effect.

B You can use the BY keyword to specify interaction between covariates.

Operations

B TIME PROGRAM computes the values for time-dependent covariates.

B COXREG replaces covariates specified on CATEGORICAL with sets of contrast variables. In
stepwise analyses, the set of contrast variables associated with one categorical variable is
entered or removed from the model as a block.

Covariates are screened to detect and eliminate redundancies.
COXREG deletes all cases that have negative values for the dependent variable.

Limitations

® Only one dependent variable is allowed.

® Maximum 100 covariates in a single interaction term.

B Maximum 35 levels for a BY variable on PATTERN.

Example

TIME PROGRAM.
COMPUTE Z=AGE + T_.

295

COXREG

COXREG VARIABLES = SURVIVAL WITH Z

/STATUS SURVSTA EVENT (1) .
TIME PROGRAM defines the time-dependent covariate Z as the current age. Z is then specified
as a covariate.

The dependent variable SURVIVAL contains the length of time to the terminal event or to
censoring.

A value of 1 on the variable SURVSTA indicates an event.

TIME PROGRAM Command

TIME PROGRAM is required to define time-dependent covariates. These are covariates whose
values change during the course of the study.

TIME PROGRAM and the transformations that define the time-dependent covariate(s) must
precede the COXREG command.

A time-dependent covariate is a function of the current time, which is represented by the
special variable 7 .

The active dataset must not have a variable named 7' . If it does, rename the variable before
you run the COXREG command. Otherwise, you will trigger an error.

T _cannot be specified as a covariate. Any other variable in the TIME PROGRAM can be
specified on the covariate list.

For every time-dependent covariate, values are generated for each valid case for all
uncensored times in the same stratum that occur before the observed time. If no STRATA
subcommand is specified, all cases are considered to belong to one stratum.

If any function defined by the time program results in a missing value for a case that has no
missing values for any other variable used in the procedure, COXREG terminates with an error.

CLEAR TIME PROGRAM Command

CLEAR TIME PROGRAM deletes all time-dependent covariates created in the previous time
program. It is primarily used in interactive mode to remove temporary variables associated with
the time program so that you can redefine time-dependent covariates for the Cox Regression
procedure. It is not necessary to use this command if you have already executed COXREG. All
temporary variables created by the time program are automatically deleted.

VARIABLES Subcommand

VARIABLES identifies the dependent variable and the covariates to be included in the analysis.

The minimum specification is the dependent variable.
Cases whose dependent variable values are negative are excluded from the analysis.

You must specify the keyword wITH and a list of all covariates if no METHOD subcommand is
specified or if a METHOD subcommand is specified without naming the variables to be used.

296

COXREG

If the covariate list is not specified on VARIABLES but one or more METHOD subcommands
are used, the covariate list is assumed to be the union of the sets of variables listed on all of
the METHOD subcommands.

You can specify an interaction of two or more covariates using the keyword BY. For example,
A B BY C D specifies the three terms 4, B*C, and D.

The keyword TO can be used to specify a list of covariates. The implied variable order is
the same as in the active dataset.

STATUS Subcommand

To determine whether the event has occurred for a particular observation, COXREG checks the
value of a status variable. STATUS lists the status variable and the code for the occurrence of

the event.

® Only one status variable can be specified. If multiple STATUS subcommands are specified,
COXREG uses the last specification and displays a warning.

m The keyword EVENT is optional, but the value list in parentheses must be specified.

m The value list must be enclosed in parentheses. All cases with non-negative times that do not
have a code within the range specified after EVENT are classified as censored cases—that is,
cases for which the event has not yet occurred.

m The value list can be one value, a list of values separated by blanks or commas, a range of
values using the keyword THRU, or a combination.

m [f missing values occur within the specified ranges, they are ignored if MISSING=EXCLUDE
(the default) is specified, but they are treated as valid values for the range if
MISSING=INCLUDE is specified.

B The status variable can be either numeric or string. If a string variable is specified, the EVENT
values must be enclosed in apostrophes and the keyword THRU cannot be used.

Example

COXREG VARIABLES = SURVIVAL WITH GROUP

/STATUS SURVSTA (3 THRU 5, 8 THRU 10).

STATUS specifies that SURVSTA is the status variable.
A value between either 3 and 5, or 8 and 10, inclusive, means that the terminal event occurred.

Values outside the specified ranges indicate censored cases.

STRATA Subcommand

STRATA identifies a stratification variable. A different baseline survival function is computed
for each stratum.

The only specification is the subcommand keyword with one, and only one, variable name.

If you have more than one stratification variable, create a new variable that corresponds to the
combination of categories of the individual variables before invoking the COXREG command.

There is no limit to the number of levels for the strata variable.

297

COXREG

Example

COXREG VARIABLES = SURVIVAL WITH GROUP

/STATUS SURVSTA (1)
/STRATA=LOCATION.

B STRATA specifies LOCATION as the strata variable.

m Different baseline survival functions are computed for each value of LOCATION.

CATEGORICAL Subcommand

CATEGORICAL identifies covariates that are nominal or ordinal. Variables that are declared to
be categorical are automatically transformed to a set of contrast variables (see CONTRAST
Subcommand on p. 297). If a variable coded as 0—1 is declared as categorical, by default, its
coding scheme will be changed to deviation contrasts.

Covariates not specified on CATEGORICAL are assumed to be at least interval, except for
strings.

Variables specified on CATEGORICAL but not on VARIABLES or any METHOD subcommand
are ignored.

Variables specified on CATEGORTICAL are replaced by sets of contrast variables. If the
categorical variable has n distinct values, n—1 contrast variables will be generated. The set
of contrast variables associated with one categorical variable are entered or removed from
the model together.

If any one of the variables in an interaction term is specified on CATEGORICAL, the interaction
term is replaced by contrast variables.

All string variables are categorical. Only the first eight characters of each value of a string
variable are used in distinguishing among values. Thus, if two values of a string variable are
identical for the first eight characters, the values are treated as though they were the same.

CONTRAST Subcommand

CONTRAST specifies the type of contrast used for categorical covariates. The interpretation of the
regression coefficients for categorical covariates depends on the contrasts used. The default is
DEVIATION. For illustration of contrast types, see the appendix.

The categorical covariate is specified in parentheses following CONTRAST.

If the categorical variable has n values, there will be n—1 rows in the contrast matrix. Each
contrast matrix is treated as a set of independent variables in the analysis.

Only one variable can be specified per CONTRAST subcommand, but multiple CONTRAST
subcommands can be specified.

You can specify one of the contrast keywords in parentheses following the variable
specification to request a specific contrast type.

298

COXREG

The following contrast types are available:

DEVIATION (refcat)

SIMPLE((refcat)

DIFFERENCE

HELMERT

POLYNOMIAL((metric)

REPEATED

SPECIAL(matrix)

INDICATOR(refcat)

Example

Deviations from the overall effect. This is the default. The effect for
each category of the independent variable except one is compared to

the overall effect. Refcat is the category for which parameter estimates
are not displayed (they must be calculated from the others). By default,
refcat is the last category. To omit a category other than the last, specify
the sequence number of the omitted category (which is not necessarily
the same as its value) in parentheses following the keyword DEVIATION.

Each category of the independent variable except the last is compared
to the last category. To use a category other than the last as the omitted
reference category, specify its sequence number (which is not necessarily
the same as its value) in parentheses following the keyword SIMPLE.

Difference or reverse Helmert contrasts. The effects for each category
of the covariate except the first are compared to the mean effect of the
previous categories.

Helmert contrasts. The effects for each category of the independent
variable except the last are compared to the mean effects of subsequent
categories.

Polynomial contrasts. The first degree of freedom contains the linear
effect across the categories of the independent variable, the second
contains the quadratic effect, and so on. By default, the categories

are assumed to be equally spaced; unequal spacing can be specified

by entering a metric consisting of one integer for each category of the
independent variable in parentheses after the keyword POLYNOMIAL. For
example, CONTRAST (STIMULUS) = POLYNOMIAL(1,2,4) indicates
that the three levels of STIMULUS are actually in the proportion 1:2:4.
The default metric is always (1,2,...,k), where k categories are involved.
Only the relative differences between the terms of the metric matter:
(1,2,4) is the same metric as (2,3,5) or (20,30,50) because, in each
instance, the difference between the second and third numbers is twice
the difference between the first and second.

Comparison of adjacent categories. Each category of the independent
variable except the last is compared to the next category.

A user-defined contrast. After this keyword, a matrix is entered in
parentheses with k—1 rows and k columns, where & is the number of
categories of the independent variable. The rows of the contrast matrix
contain the special contrasts indicating the desired comparisons between
categories. If the special contrasts are linear combinations of each other,
COXREG reports the linear dependency and stops processing. If k rows
are entered, the first row is discarded and only the last &—1 rows are used
as the contrast matrix in the analysis.

Indicator variables. Contrasts indicate the presence or absence of
category membership. By default, refcat is the last category (represented
in the contrast matrix as a row of zeros). To omit a category other

than the last, specify the sequence number of the category (which is

not necessarily the same as its value) in parentheses after keyword
INDICATOR.

COXREG VARIABLES = SURVIVAL WITH GROUP

/STATUS SURVSTA (1)
/STRATA=LOCATION
/CATEGORICAL = GROUP

/CONTRAST (GROUP) =SPECIAL (2 -1 -1

0o 1 -1).

299

COXREG

The specification of GROUP on CATEGORICAL replaces the variable with a set of contrast
variables.

GROUP identifies whether a case is in one of the three treatment groups.

A SPECIAL type contrast is requested. A three-column, two-row contrast matrix is entered
in parentheses.

METHOD Subcommand

METHOD specifies the order of processing and the manner in which the covariates enter the model.
If no METHOD subcommand is specified, the default method is ENTER.

The subcommand keyword METHOD can be omitted.

You can list all covariates to be used for the method on a variable list. If no variable
list is specified, the default is ALL: all covariates named after WITH on the VARIABLES
subcommand are used for the method.

The keyword BY can be used between two variable names to specify an interaction term.

Variables specified on CATEGORICAL are replaced by sets of contrast variables. The contrast
variables associated with a categorical variable are entered or removed from the model
together.

Three keywords are available to specify how the model is to be built:

ENTER Forced entry. All variables are entered in a single step. This is the default if the METHOD

subcommand is omitted.

FSTEP Forward stepwise. The covariates specified on FSTEP are tested for entry into the model

one by one based on the significance level of the score statistic. The variable with the
smallest significance less than PIN is entered into the model. After each entry, variables
that are already in the model are tested for possible removal based on the significance

of the Wald statistic, likelihood ratio, or conditional criterion. The variable with the
largest probability greater than the specified POUT value is removed and the model is
reestimated. Variables in the model are then again evaluated for removal. Once no more
variables satisfy the removal criteria, covariates not in the model are evaluated for entry.
Model building stops when no more variables meet entry or removal criteria, or when the
current model is the same as a previous one.

BSTEP Backward stepwise. As a first step, the covariates specified on BSTEP are entered into the

model together and are tested for removal one by one. Stepwise removal and entry then
follow the same process as described for FSTEP until no more variables meet entry and
removal criteria, or when the current model is the same as a previous one.

Multiple METHOD subcommands are allowed and are processed in the order in which they are
specified. Each method starts with the results from the previous method. If BSTEP is used, all
eligible variables are entered at the first step. All variables are then eligible for entry and
removal unless they have been excluded from the METHOD variable list.

300

COXREG

The statistic used in the test for removal can be specified by an additional keyword in parentheses
following FSTEP or BSTEP. If FSTEP or BSTEP is specified by itself, the default is COND.

COND Conditional statistic. This is the default if FSTEP or BSTEP is specified by itself

WALD Wald statistic. The removal of a covariate from the model is based on the significance of
the Wald statistic.

LR Likelihood ratio. The removal of a covariate from the model is based on the significance

of the change in the log-likelihood. If LR is specified, the model must be reestimated
without each of the variables in the model. This can substantially increase computational
time. However, the likelihood-ratio statistic is better than the Wald statistic for deciding
which variables are to be removed.

Example

COXREG VARIABLES = SURVIVAL WITH GROUP SMOKE DRINK
/STATUS SURVSTA (1)

/CATEGORICAL = GROUP SMOKE DRINK

/METHOD ENTER GROUP

/METHOD BSTEP (LR) SMOKE DRINK SMOKE BY DRINK.

B GROUP, SMOKE, and DRINK are specified as covariates and as categorical variables.

® The first METHOD subcommand enters GROUP into the model.

® Variables in the model at the termination of the first METHOD subcommand are included in the
model at the beginning of the second METHOD subcommand.

B The second METHOD subcommand adds SMOKE, DRINK, and the interaction of SMOKE
with DRINK to the previous model.

m Backward stepwise regression analysis is then done using the likelihood-ratio statistic as
the removal criterion. The variable GROUP is not eligible for removal because it was not
specified on the BSTEP subcommand.

® The procedure continues until the removal of a variable will result in a decrease in the
log-likelihood with a probability smaller than POUT.

MISSING Subcommand

MISSING controls missing value treatments. If MISSING is omitted, the default is EXCLUDE.

m Cases with negative values on the dependent variable are automatically treated as missing
and are excluded.

m To be included in the model, a case must have nonmissing values for the dependent, status,
strata, and all independent variables specified on the COXREG command.

EXCLUDE Exclude user-missing values. User-missing values are treated as missing. This
is the default if MTISSING is omitted.

INCLUDE Include user-missing values. User-missing values are included in the analysis.

301
COXREG

PRINT Subcommand

By default, COXREG prints a full regression report for each step. You can use the PRINT
subcommand to request specific output. If PRINT is not specified, the default is DEFAULT.

DEFAULT Full regression output including overall model statistics and statistics for
variables in the equation and variables not in the equation. This is the default

when PRINT is omitted.

SUMMARY Summary information. The output includes —2 log-likelihood for the initial
model, one line of summary for each step, and the final model printed with full
detail.

CORR Correlation/covariance matrix of parameter estimates for the variables in the
model.

BASELINE Baseline table. For each stratum, a table is displayed showing the baseline

cumulative hazard, as well as survival, standard error, and cumulative hazard
evaluated at the covariate means for each observed time point in that stratum.

CI (value) Confidence intervals fore®. Specify the confidence level in parentheses. The
requested intervals are displayed whenever a variables-in-equation table is
printed. The default is 95%.

ALL All available output.
m Estimation histories showing the last 10 iterations are printed if the solution fails to converge.

Example

COXREG VARIABLES = SURVIVAL WITH GROUP
/STATUS = SURVSTA (1)
/STRATA = LOCATION
/CATEGORICAL = GROUP
/METHOD = ENTER
/PRINT ALL.

B PRINT requests summary information, a correlation matrix for parameter estimates,
a baseline survival table for each stratum, and confidence intervals for ¢? with each
variables-in-equation table, in addition to the default output.

CRITERIA Subcommand

CRITERIA controls the statistical criteria used in building the Cox Regression models. The way
in which these criteria are used depends on the method specified on the METHOD subcommand.
The default criteria are noted in the description of each keyword below. Iterations will stop if
any of the criteria for BCON, LCON, or ITERATE are satisfied.

BCON(value) Change in parameter estimates for terminating iteration. Alias PCON.
Iteration terminates when the parameters change by less than the
specified value. BCON defaults to 1E—4. To eliminate this criterion,
specify a value of 0.

ITERATE(value) Maximum number of iterations. If a solution fails to converge after
the maximum number of iterations has been reached, COXREG displays
an iteration history showing the last 10 iterations and terminates the
procedure. The default for ITERATE is 20.

302

COXREG

LCON(value) Percentage change in the log-likelihood ratio for terminating iteration.

If the log-likelihood decreases by less than the specified value, iteration
terminates. LCON defaults to 1E—5. To eliminate this criterion, specify a
value of 0.

PIN(value) Probability of score statistic for variable entry. A variable whose

significance level is greater than PIN cannot enter the model. The default
for PIN is 0.05.

POUT(value) Probability of Wald, LR, or conditional LR statistic to remove a variable.

A variable whose significance is less than POUT cannot be removed.
The default for pouT is 0.1.

Example

COXREG VARIABLES = SURVIVAL WITH GROUP AGE BP TMRSZ

/STATUS = SURVSTA (1)

/STRATA = LOCATION

/CATEGORICAL = GROUP

/METHOD BSTEP

/CRITERIA BCON(0) ITERATE(10) PIN(0.01) POUT(0.05).

A backward stepwise Cox Regression analysis is performed.
CRITERIA alters four of the default statistical criteria that control the building of a model.

Zero specified on BCON indicates that change in parameter estimates is not a criterion for
termination. BCON can be set to 0 if only LCON and ITER are to be used.

ITERATE specifies that the maximum number of iterations is 10. LCON is not changed and the
default remains in effect. If either ITERATE or LCON is met, iterations will terminate.

POUT requires that the probability of the statistic used to test whether a variable should remain
in the model be smaller than 0.05. This is more stringent than the default value of 0.1.

PIN requires that the probability of the score statistic used to test whether a variable should be
included be smaller than 0.01. This makes it more difficult for variables to be included in the
model than does the default PIN, which has a value of 0.05.

PLOT Subcommand

You can request specific plots to be produced with the PLOT subcommand. Each requested
plot is produced once for each pattern specified on the PATTERN subcommand. If PLOT is not
specified, the default is NONE (no plots are printed). Requested plots are displayed at the end of
the final model.

B The set of plots requested is displayed for the functions at the mean of the covariates and at
each combination of covariate values specified on PATTERN.

m If time-dependent covariates are included in the model, no plots are produced.

® Lines on a plot are connected as step functions.

NONE Do not display plots.

SURVIVAL Plot the cumulative survival distribution.

HAZARD Plot the cumulative hazard function.

303

COXREG

LML Plot the log-minus-log-of-survival function.

OMS Plot the one-minus-survival function.

PATTERN

Subcommand

PATTERN specifies the pattern of covariate values to be used for the requested plots and
coefficient tables.

A value must be specified for each variable specified on PATTERN.

Continuous variables that are included in the model but not named on PATTERN are evaluated
at their means.

Categorical variables that are included in the model but not named on PATTERN are evaluated
at the means of the set of contrasts generated to replace them.

You can request separate lines for each category of a variable that is in the model. Specify the
name of the categorical variable after the keyword BY. The BY variable must be a categorical
covariate. You cannot specify a value for the BY covariate.

Multiple PATTERN subcommands can be specified. COXREG produces a set of requested plots
for each specified pattern.

PATTERN cannot be used when time-dependent covariates are included in the model.

OUTFILE Subcommand

OUTFILE writes data to an external SPSS data file or a previously declared dataset (DATASET
DECLARE command). COXREG writes two types of data files. You can specify the file type to be
created with one of the two keywords, followed by a quoted file specification in parentheses.

COEFF Write an SPSS data file containing the coefficients from the final model.
TABLE Write the survival table to an SPSS data file. The file contains cumulative survival,

standard error, and cumulative hazard statistics for each uncensored time within
each stratum evaluated at the baseline and at the mean of the covariates. Additional
covariate patterns can be requested on PATTERN.

SAVE Subcommand

SAVE saves the temporary variables created by COXREG. The temporary variables include:

SURVIVAL Survival function evaluated at the current case.

SE Standard error of the survival function.

HAZARD Cumulative hazard function evaluated at the current case. Alias RESID.

LML Log-minus-log-of-survival function.

DFBETA Change in the coefficient if the current case is removed. There is one DFBETA

for each covariate in the final model. If there are time-dependent covariates, only
DFBETA can be requested. Requests for any other temporary variable are ignored.

304

COXREG

PRESID Partial residuals. There is one residual variable for each covariate in the final
model. If a covariate is not in the final model, the corresponding new variable
has the system-missing value.

XBETA Linear combination of mean corrected covariates times regression coefficients
from the final model.

m To specify variable names for the new variables, assign the new names in parentheses
following each temporary variable name.

B Assigned variable names must be unique in the active dataset. Scratch or system variable
names cannot be used (that is, the variable names cannot begin with # or $).

m [f new variable names are not specified, COXREG generates default names. The default name
is composed of the first three characters of the name of the temporary variable (two for SE),
followed by an underscore and a number to make it unique.

B A temporary variable can be saved only once on the same SAVE subcommand.

Example

COXREG VARIABLES = SURVIVAL WITH GROUP
/STATUS = SURVSTA (1)
/STRATA = LOCATION
/CATEGORICAL = GROUP
/METHOD = ENTER
/SAVE SURVIVAL HAZARD.

B COXREG saves cumulative survival and hazard in two new variables, SUR [and HAZ 1,
provided that neither of the two names exists in the active dataset. If one does, the numeric
suffixes will be incremented to make a distinction.

EXTERNAL Subcommand

EXTERNAL specifies that the data for each split-file group should be held in an external scratch file
during processing. This helps conserve working space when running analyses with large data sets.

B The EXTERNAL subcommand takes no other keyword and is specified by itself.

m [f time-dependent covariates exist, external data storage is unavailable, and EXTERNAL is
ignored.

CREATE

CREATE new series={CSUM (series)
{DIFF (series, order)
{FFT (series)
{IFFT (series)
{LAG (series, order [,order 1)
{LEAD (series, order [,order])
{MA (series, span [,minimum spanl])
{PMA (series, span)
{RMED (series, span [,minimum span])
{SDIFF (series, order [,periodicity])
{T4253H (series)

L N N S e R R e

[/new series=function (series {,span {,minimum span}})]
{,order {,order 1}
{,periodicity }

Function keywords:

CSUM Cumulative sum

DIFF Difference

FFT Fast Fourier transform
IFFT Inverse fast Fourier transform
LAG Lag

LEAD Lead

MA Centered